搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相场法探究铁电体涡旋拓扑结构与准同型相界

刘钟磊 曹津铭 王智 赵宇宏

引用本文:
Citation:

相场法探究铁电体涡旋拓扑结构与准同型相界

刘钟磊, 曹津铭, 王智, 赵宇宏

Phase-field method explored ferroelectric vortex topology structure and morphotropic phase boundaries

Liu Zhong-Lei, Cao Jin-Ming, Wang Zhi, Zhao Yu-Hong
PDF
HTML
导出引用
  • 钙钛矿晶体结构决定了铁电陶瓷铁电性的出现和极化方向的确定, 当极化方向具有一定规律的排序时, 不同电畴结构会组合形成具有特定形貌的多粒子系统, 即存在于铁电体中的拓扑结构. 本研究通过相场法, 模拟了不同迟滞电场和厚度下铌酸钾钠($ {\rm{K}}_{0.5}{\rm{N}\rm{a}}_{0.5}\rm{N}\rm{b}{\rm{O}}_{3} $)薄膜的电畴结构并进行观察, 根据电场下电畴结构的不同翻转路径将电畴翻转分为快速和慢速翻转阶段, 基于此提出先确定所需实验的电畴翻转状态再进行定向观测的手段. 通过对电畴结构结合极化矢量的分析, 首次在铌酸钾钠薄膜中观察到明显多畴组合而成的涡旋-反涡旋对拓扑结构. 对涡旋结构进一步分析其翻转过程, 观察到这种涡旋拓扑微观结构可以使电畴更容易发生翻转, 从而使更多小范围极化矢量进行排序, 以形成所需的多粒子系统拓扑结构. 这种极化矢量排序对铁电材料介电性能改善机制, 是与准同型相界两侧特定极化方向所形成的微观相界有着异曲同工之处.
    The perovskite crystal structure determines the appearance of ferroelectricity and the polarization direction of ferroelectric ceramics. When the polarization direction has a certain order, different domain structures will combine to form a multiparticle system with a specific morphology, i.e. the topological structure existing in ferroelectrics. In this study, the domain structures of potassium sodium niobate ($ {\rm{K}}_{0.5}{\rm{N}\rm{a}}_{0.5}\rm{N}\rm{b}{\rm{O}}_{3} $) thin films under different hysteresis electric fields and thickness are simulated and observed by the phase field method. According to the different switching paths of the domain structure under the electric field, the domain is divided into fast and slow switching process. Based on this, a method is proposed to first determine the domain switching state of the desired experiment and then conduct directional observation. Through the analysis of the domain structures combined with the polarization vector, a clear multi-domain combined with vortex-antivortex pair topological structure is observed for the first time in $ {\rm{K}}_{0.5}{\rm{N}\rm{a}}_{0.5}\rm{N}\rm{b}{\rm{O}}_{3} $ film. The vortex structure is further analyzed for its switching process, and it is observed that this vortex topological microstructure can make the domain more likely to switch, so that more small-scale polarization vectors can be ordered, forming the desired multiparticle system topology. The mechanism of improving the dielectric properties of ferroelectric material by this polarization vector ordering is similar to that of the microscopic phase boundary formed by the specific polarization directions on both sides of the quasi morphotropic phase boundary.
      通信作者: 赵宇宏, zhaoyuhong@nuc.edu.cn
      Corresponding author: Zhao Yu-Hong, zhaoyuhong@nuc.edu.cn
    [1]

    Wada S, Muraoka K, Kakemoto H, Tsurumi T, Kumagai H 2004 Jpn. J. Appl. Phys. 43 6692Google Scholar

    [2]

    Wang B, Li F, Chen L Q 2021 Adv. Mater. 33 2105071Google Scholar

    [3]

    Braun H B 2012 Adv. Phys. 61 1Google Scholar

    [4]

    Toulouse G, Kléman M 1976 Journal de Physique Lettres 37 149Google Scholar

    [5]

    Kittel C 1949 Rev. Mod. Phys. 21 541Google Scholar

    [6]

    Chen S, Yuan S, Hou Z P, Tang Y L, Zhang J P, Wang T, Li K, Zhao W W, Liu X J, Chen L, Martin L W, Chen Z H 2021 Adv. Mater. 33 2000857Google Scholar

    [7]

    Fu H, Bellaiche L 2003 Phys. Rev. Lett. 91 257601Google Scholar

    [8]

    Kornev I, Fu H, Bellaiche L 2004 Phys. Rev. Lett. 93 196104Google Scholar

    [9]

    Naumov I I, Bellaiche L, Fu H 2004 Nature 432 737Google Scholar

    [10]

    Prosandeev S, Bellaiche L 2007 Phys. Rev. B 75 172109Google Scholar

    [11]

    Hong J W, Catalan G, Fang D N, Artacho E, Scott J F 2010 Phys. Rev. B 81 172101Google Scholar

    [12]

    Shimada T, Wang X, Kondo Y, Kitamura T 2012 Phys. Rev. Lett. 108 067601Google Scholar

    [13]

    Vasudevan R K, Chen Y C, Tai H H, Balke N, Wu P, Bhattacharya S, Chen L Q, Chu Y H, Lin I N, Kalinin S V, Nagarajan V 2011 ACS Nano 5 879Google Scholar

    [14]

    Jia C L, Urban K W, Alexe M, Hesse D, Vrejoiu I 2011 Science 331 1420Google Scholar

    [15]

    Matsumoto T, Ishikawa R, Tohei T, Kimura H, Yao Q, Zhao H, Wang X, Chen D, Cheng Z, Shibata N, Ikuhara Y 2013 Nano Lett. 13 4594Google Scholar

    [16]

    Tang Y L, Zhu Y L, Ma X L, Borisevich A Y, Morozovska A N, Eliseev E A, Wang W Y, Wang Y J, Xu Y B, Zhang Z D, Pennycook S J 2015 Science 348 547Google Scholar

    [17]

    Chu K, Yang C H 2018 Rev. Sci. Instrum. 89 123704Google Scholar

    [18]

    Kim J, You M, Kim K E, Chu K, Yang C H 2019 npj Quantum Mater. 4 29Google Scholar

    [19]

    Li Z, Shen H, Dawson G, Zhang Z, Wang Y, Nan F, Song G, Li G, Wu Y, Liu H 2022 J. Mater. Chem. C 10 3071Google Scholar

    [20]

    Bai G, Ma W 2010 Physica B 405 1901Google Scholar

    [21]

    Ke X Q, Wang D, Ren X, Wang Y 2013 Phys. Rev. B 88 214105Google Scholar

    [22]

    Schwarzkopf J, Braun D, Hanke M, Kwasniewski A, Sellmann J, Schmidbauer M 2016 J. Appl. Crystallogr. 49 375Google Scholar

    [23]

    Schwarzkopf J, Braun D, Hanke M, Uecker R, Schmidbauer M 2017 Front. Mater. 4 26Google Scholar

    [24]

    Wang Y K, Bin Anooz S, Niu G, Schmidbauer M, Wang L Y, Ren W, Schwarzkopf J 2022 Phys. Rev. Mater. 6 084413Google Scholar

    [25]

    von Helden L, Schmidbauer M, Liang S J, Hanke M, Wordenweber R, Schwarzkopf J 2018 Nanotechnology 29 415704Google Scholar

    [26]

    Zhou M J, Wang B, Ladera A, Bogula L, Liu H X, Chen L Q, Nan C W 2021 Acta Mater. 215 117038Google Scholar

    [27]

    Chen L Q, Shen J 1998 Comput. Phys. Commun. 108 147Google Scholar

    [28]

    Pohlmann H, Wang J J, Wang B, Chen L Q 2017 Appl. Phys. Lett. 110 102906Google Scholar

    [29]

    Scott J F, Paz de Araujo C A 1989 Science 246 1400Google Scholar

    [30]

    Li Y L, Hu S Y, Liu Z K, Chen L Q 2002 Acta Mater. 50 395Google Scholar

    [31]

    Luo J, Zhang S, Zhou Z, Zhang Y, Lee H Y, Yue Z, Li J F 2019 J. Am. Ceram. Soc. 102 2770Google Scholar

    [32]

    Wang B, Chen H N, Wang J J, Chen L Q 2019 Appl. Phys. Lett. 115 092902Google Scholar

    [33]

    https://www.mupro.co/ [2022-9-28]

    [34]

    Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899Google Scholar

    [35]

    Xue F, Wang X, Shi Y, Cheong S W, Chen L Q 2017 Phys. Rev. B 96 104109Google Scholar

    [36]

    Trieloff M, Jessberger E K, Herrwerth I, Hopp J, Fieni C, Ghelis M, Bourot-Denise M, Pellas P 2003 Nature 422 502Google Scholar

    [37]

    Yang W, Tian G, Fan H, Zhao Y, Chen H, Zhang L, Wang Y, Fan Z, Hou Z, Chen D, Gao J, Zeng M, Lu X, Qin M, Gao X, Liu J M 2022 Adv. Mater. 34 e2107711Google Scholar

    [38]

    Yan M, Wang H, Campbell C E 2008 J. Magn. Magn. Mater. 320 1937Google Scholar

    [39]

    Vasudevan R K, Liu Y, Li J, Liang W I, Kumar A, Jesse S, Chen Y C, Chu Y H, Nagarajan V, Kalinin S V 2011 Nano Lett. 11 3346Google Scholar

    [40]

    Ke X, Wang D, Ren X, Wang Y 2020 Phys. Rev. Lett. 125 127602Google Scholar

    [41]

    Sato Y, Hirayama T, Ikuhara Y 2011 Phys. Rev. Lett. 107 187601Google Scholar

    [42]

    Janolin P E 2009 J. Mater. Sci. 44 5025Google Scholar

  • 图 1  薄膜模型示意图

    Fig. 1.  Schematic diagram of the thin film model.

    图 2  平面内涡旋结构示意图 (a) w = 0; (b) w = 1; (c) w = 2

    Fig. 2.  Schematic diagrams of in-plane vortex structure: (a) w = 0; (b) w = 1; (c) w = 2.

    图 3  不同滞后电场下的电滞回线

    Fig. 3.  P-E loops under different hysteresis electric fields.

    图 4  (a)—(f)快速翻转电畴结构图, 其中(a) t = 1110, (b) t = 1120, (c) t = 1140, (d) t = 1150, (e) t = 1160, (f) t = 1170; (g)—(i) 慢速翻转电畴结构图, 其中(g) t = 1300, (h) t = 1400, (i) t = 1500

    Fig. 4.  (a)–(f) Diagrams of domain structure at fast speed: (a) t = 1110; (b) t = 1120; (c) t = 1140; (d) t = 1150; (e) t = 1160; (f) t = 1170. (g)–(i) Diagrams of domain structure at slow speed: (g) t = 1300; (h) t = 1400; (i) t = 1500.

    图 5  电畴含量变化图 (a) 总电畴变化; (b) R畴变化; (c) O畴变化

    Fig. 5.  Domain composition change diagrams: (a) Total domain change; (b) R domain change; (c) O domain change.

    图 6  两种电畴翻转阶段的能量密度 (a) 快速电畴翻转阶段; (b) 慢速电畴翻转阶段

    Fig. 6.  Energy density of two domain switching stages: (a) Fast domain switch section; (b) slow domain switch section.

    图 7  1100步滞后电场处理后电畴结构 (a) 顶层条纹畴结构; (b) 底层涡旋畴结构

    Fig. 7.  Domain structures after 1100-step hysteresis electric field loading: (a) Top-layer striped domain structure; (b) bottom-layer vortex domain structure.

    图 8  (a)—(c) 不同厚度下的底层(上图)和顶层(下图)电畴结构图, 其中(a) 20 nm, (b) 10 nm, (c) 6 nm; (d)—(i) 涡旋电畴结构翻转过程, 其中(d) t = 20, (e) t = 40, (f) t = 50, (g) t = 60, (h) t = 70, (i) t = 80

    Fig. 8.  (a)–(c) Bottom (upper panel) and top (bottom panel) layer domain structures at different thicknesses: (a) 20 nm; (b) 10 nm; (c) 6 nm. (d)–(i) Vortex domain structure switching stages: (d) t = 20; (e) t = 40; (f) t = 50; (g) t = 60; (h) t = 70; (i) t = 80.

    图 9  (a)—(c) 三种不同厚度体系能量, 其中(a) 弹性能密度, (b) 电场能密度, (c) 朗道能密度; (d) 三种不同厚度的电滞回线

    Fig. 9.  (a)–(c) Energy of system with three different thicknesses: (a) Elastic energy density; (b) electrostatic energy density; (c) landau energy density. (d) P-E loops with three different thicknesses.

    图 10  电畴翻转过程中涡旋的变化 (a) t = 20; (b) t = 40; (c) t = 50; (d) t = 60; (e) t = 70; (f) t = 80

    Fig. 10.  Vortex change in domain switching process: (a) t = 20; (b) t = 40; (c) t = 50; (d) t = 60; (e) t = 70; (f) t = 80.

    图 11  (a), (b) 相场模拟中相邻的涡旋结构, 其中(a)电畴结构图, (b) 极化矢量图; (c) 实验观察两种相邻涡旋结构[18]

    Fig. 11.  Two adjacent vortex structures: (a) Domain structure diagram; (b) polarization vector diagram. (c) Experimental observation of the two vortex structures[18].

    Baidu
  • [1]

    Wada S, Muraoka K, Kakemoto H, Tsurumi T, Kumagai H 2004 Jpn. J. Appl. Phys. 43 6692Google Scholar

    [2]

    Wang B, Li F, Chen L Q 2021 Adv. Mater. 33 2105071Google Scholar

    [3]

    Braun H B 2012 Adv. Phys. 61 1Google Scholar

    [4]

    Toulouse G, Kléman M 1976 Journal de Physique Lettres 37 149Google Scholar

    [5]

    Kittel C 1949 Rev. Mod. Phys. 21 541Google Scholar

    [6]

    Chen S, Yuan S, Hou Z P, Tang Y L, Zhang J P, Wang T, Li K, Zhao W W, Liu X J, Chen L, Martin L W, Chen Z H 2021 Adv. Mater. 33 2000857Google Scholar

    [7]

    Fu H, Bellaiche L 2003 Phys. Rev. Lett. 91 257601Google Scholar

    [8]

    Kornev I, Fu H, Bellaiche L 2004 Phys. Rev. Lett. 93 196104Google Scholar

    [9]

    Naumov I I, Bellaiche L, Fu H 2004 Nature 432 737Google Scholar

    [10]

    Prosandeev S, Bellaiche L 2007 Phys. Rev. B 75 172109Google Scholar

    [11]

    Hong J W, Catalan G, Fang D N, Artacho E, Scott J F 2010 Phys. Rev. B 81 172101Google Scholar

    [12]

    Shimada T, Wang X, Kondo Y, Kitamura T 2012 Phys. Rev. Lett. 108 067601Google Scholar

    [13]

    Vasudevan R K, Chen Y C, Tai H H, Balke N, Wu P, Bhattacharya S, Chen L Q, Chu Y H, Lin I N, Kalinin S V, Nagarajan V 2011 ACS Nano 5 879Google Scholar

    [14]

    Jia C L, Urban K W, Alexe M, Hesse D, Vrejoiu I 2011 Science 331 1420Google Scholar

    [15]

    Matsumoto T, Ishikawa R, Tohei T, Kimura H, Yao Q, Zhao H, Wang X, Chen D, Cheng Z, Shibata N, Ikuhara Y 2013 Nano Lett. 13 4594Google Scholar

    [16]

    Tang Y L, Zhu Y L, Ma X L, Borisevich A Y, Morozovska A N, Eliseev E A, Wang W Y, Wang Y J, Xu Y B, Zhang Z D, Pennycook S J 2015 Science 348 547Google Scholar

    [17]

    Chu K, Yang C H 2018 Rev. Sci. Instrum. 89 123704Google Scholar

    [18]

    Kim J, You M, Kim K E, Chu K, Yang C H 2019 npj Quantum Mater. 4 29Google Scholar

    [19]

    Li Z, Shen H, Dawson G, Zhang Z, Wang Y, Nan F, Song G, Li G, Wu Y, Liu H 2022 J. Mater. Chem. C 10 3071Google Scholar

    [20]

    Bai G, Ma W 2010 Physica B 405 1901Google Scholar

    [21]

    Ke X Q, Wang D, Ren X, Wang Y 2013 Phys. Rev. B 88 214105Google Scholar

    [22]

    Schwarzkopf J, Braun D, Hanke M, Kwasniewski A, Sellmann J, Schmidbauer M 2016 J. Appl. Crystallogr. 49 375Google Scholar

    [23]

    Schwarzkopf J, Braun D, Hanke M, Uecker R, Schmidbauer M 2017 Front. Mater. 4 26Google Scholar

    [24]

    Wang Y K, Bin Anooz S, Niu G, Schmidbauer M, Wang L Y, Ren W, Schwarzkopf J 2022 Phys. Rev. Mater. 6 084413Google Scholar

    [25]

    von Helden L, Schmidbauer M, Liang S J, Hanke M, Wordenweber R, Schwarzkopf J 2018 Nanotechnology 29 415704Google Scholar

    [26]

    Zhou M J, Wang B, Ladera A, Bogula L, Liu H X, Chen L Q, Nan C W 2021 Acta Mater. 215 117038Google Scholar

    [27]

    Chen L Q, Shen J 1998 Comput. Phys. Commun. 108 147Google Scholar

    [28]

    Pohlmann H, Wang J J, Wang B, Chen L Q 2017 Appl. Phys. Lett. 110 102906Google Scholar

    [29]

    Scott J F, Paz de Araujo C A 1989 Science 246 1400Google Scholar

    [30]

    Li Y L, Hu S Y, Liu Z K, Chen L Q 2002 Acta Mater. 50 395Google Scholar

    [31]

    Luo J, Zhang S, Zhou Z, Zhang Y, Lee H Y, Yue Z, Li J F 2019 J. Am. Ceram. Soc. 102 2770Google Scholar

    [32]

    Wang B, Chen H N, Wang J J, Chen L Q 2019 Appl. Phys. Lett. 115 092902Google Scholar

    [33]

    https://www.mupro.co/ [2022-9-28]

    [34]

    Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899Google Scholar

    [35]

    Xue F, Wang X, Shi Y, Cheong S W, Chen L Q 2017 Phys. Rev. B 96 104109Google Scholar

    [36]

    Trieloff M, Jessberger E K, Herrwerth I, Hopp J, Fieni C, Ghelis M, Bourot-Denise M, Pellas P 2003 Nature 422 502Google Scholar

    [37]

    Yang W, Tian G, Fan H, Zhao Y, Chen H, Zhang L, Wang Y, Fan Z, Hou Z, Chen D, Gao J, Zeng M, Lu X, Qin M, Gao X, Liu J M 2022 Adv. Mater. 34 e2107711Google Scholar

    [38]

    Yan M, Wang H, Campbell C E 2008 J. Magn. Magn. Mater. 320 1937Google Scholar

    [39]

    Vasudevan R K, Liu Y, Li J, Liang W I, Kumar A, Jesse S, Chen Y C, Chu Y H, Nagarajan V, Kalinin S V 2011 Nano Lett. 11 3346Google Scholar

    [40]

    Ke X, Wang D, Ren X, Wang Y 2020 Phys. Rev. Lett. 125 127602Google Scholar

    [41]

    Sato Y, Hirayama T, Ikuhara Y 2011 Phys. Rev. Lett. 107 187601Google Scholar

    [42]

    Janolin P E 2009 J. Mater. Sci. 44 5025Google Scholar

  • [1] 张福平, 李玺钦, 杜金梅, 刘雨生, 叶福庆. 铁电陶瓷脉冲耐压失效分布及耐压可靠性.  , 2024, 73(10): 107701. doi: 10.7498/aps.73.20231354
    [2] 王凯乐, 杨文奎, 史新成, 侯华, 赵宇宏. 相场法研究AlxCuMnNiFe高熵合金富Cu相析出机理.  , 2023, 72(7): 076102. doi: 10.7498/aps.72.20222439
    [3] 蒋新安, 赵宇宏, 杨文奎, 田晓林, 侯华. 相场法研究Fe84Cu15Mn1合金富Cu相析出的内磁能作用机理.  , 2022, 71(8): 080201. doi: 10.7498/aps.71.20212087
    [4] 杨辉, 冯泽华, 王贺然, 张云鹏, 陈铮, 信天缘, 宋小蓉, 吴璐, 张静. Fe-Cr合金辐照空洞微结构演化的相场法模拟.  , 2021, 70(5): 054601. doi: 10.7498/aps.70.20201457
    [5] 郭震, 赵宇宏, 孙远洋, 赵宝军, 田晓林, 侯华. 相场法研究Fe-Cu-Mn-Al合金富Cu相析出机制.  , 2021, 70(8): 086401. doi: 10.7498/aps.70.20201843
    [6] 郭少波, 闫世光, 曹菲, 姚春华, 王根水, 董显林. 红外探测用无铅铁电陶瓷的热释电特性研究进展.  , 2020, 69(12): 127708. doi: 10.7498/aps.69.20200303
    [7] 杨文达, 陈洪英, 陈䶮, 田国, 高兴森. 铁电纳米结构中奇异极化拓扑畴的研究新进展.  , 2020, 69(21): 217501. doi: 10.7498/aps.69.20201063
    [8] 张军, 陈文雄, 郑成武, 李殿中. γ-α相变中不同晶界特征下铁素体生长形貌的相场模拟.  , 2017, 66(7): 070701. doi: 10.7498/aps.66.070701
    [9] 王陶, 李俊杰, 王锦程. 界面润湿性及固相体积分数对颗粒粗化动力学影响的相场法研究.  , 2013, 62(10): 106402. doi: 10.7498/aps.62.106402
    [10] 王雅琴, 王锦程, 李俊杰. 定向倾斜枝晶生长规律及竞争行为的相场法研究.  , 2012, 61(11): 118103. doi: 10.7498/aps.61.118103
    [11] 王明光, 赵宇宏, 任娟娜, 穆彦青, 王伟, 杨伟明, 李爱红, 葛洪浩, 侯华. 相场法模拟NiCu合金非等温凝固枝晶生长.  , 2011, 60(4): 040507. doi: 10.7498/aps.60.040507
    [12] 蒋冬冬, 谷岩, 冯玉军, 杜金梅. 静水压下锆锡钛酸铅铁电陶瓷相变和介电性能研究.  , 2011, 60(10): 107703. doi: 10.7498/aps.60.107703
    [13] 余罡, 董显林, 王根水, 陈学锋, 曹菲. 37BiScO3-63PbTiO3铁电陶瓷的极化翻转行为研究.  , 2010, 59(12): 8890-8896. doi: 10.7498/aps.59.8890
    [14] 龙文元, 吕冬兰, 夏春, 潘美满, 蔡启舟, 陈立亮. 强迫对流影响二元合金非等温凝固枝晶生长的相场法模拟.  , 2009, 58(11): 7802-7808. doi: 10.7498/aps.58.7802
    [15] 宗亚平, 王明涛, 郭巍. 再结晶和外力场下第二相析出的相场法模拟.  , 2009, 58(13): 161-S168. doi: 10.7498/aps.58.161
    [16] 陈学锋, 李华梅, 李东杰, 曹 菲, 董显林. 脉冲电容器用细电滞回线铁电陶瓷材料的研究.  , 2008, 57(11): 7298-7304. doi: 10.7498/aps.57.7298
    [17] 李俊杰, 王锦程, 许 泉, 杨根仓. 外来夹杂物颗粒对枝晶生长形态影响的相场法研究.  , 2007, 56(3): 1514-1519. doi: 10.7498/aps.56.1514
    [18] 龙文元, 蔡启舟, 魏伯康, 陈立亮. 相场法模拟多元合金过冷熔体中的枝晶生长.  , 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [19] 张玉祥, 王锦程, 杨根仓, 周尧和. 相场法模拟弹性场对沉淀相变组织演化及相平衡成分的影响.  , 2006, 55(5): 2433-2438. doi: 10.7498/aps.55.2433
    [20] 杨 弘, 张清光, 陈 民. 热扰动对过冷熔体中二次枝晶生长影响的相场法模拟.  , 2005, 54(8): 3740-3744. doi: 10.7498/aps.54.3740
计量
  • 文章访问数:  5232
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-29
  • 修回日期:  2022-10-31
  • 上网日期:  2022-11-11
  • 刊出日期:  2023-02-05

/

返回文章
返回
Baidu
map