-
本文测试了人工构建的一维短沟槽复合准晶结构对流体的减阻性能,并与一维短沟槽复合周期结构和一维沟槽周期结构的流阻进行了对比.实验结果表明,一维短沟槽复合准晶结构的减阻效果优于一维短沟槽复合周期结构,其中一维短沟槽十二重复合准晶结构的减阻效果最佳,同时与一维沟槽周期结构具有同样的减阻效果.在机理分析方面,建立了二维光栅的夫琅禾费衍射波模型,对通过一维短沟槽复合准晶结构的波谱特征进行模拟分析. 频谱分析表明,经过二维准周期光栅的相干波强度谱具有谱带结构特征,抑制了大角度方向上的强峰形成.这一结果与流体流过一维短沟槽复合准晶结构相对应,展向上的准周期结构在激活边界层微扰动的同时,也使得二次涡分布比较均匀,从而抑制了展向强扰动的形成,所以能够有效减小流阻.
-
关键词:
- 一维短沟槽复合准晶结构 /
- 流体减阻 /
- 二维光栅模型 /
- 谱带结构
Short groove arranged in one-dimensional quasicrystal structure is designed by mechanical method in this paper and drag reduction experiments are performed by viscometer. The results show that there is a novel drag reduction effect compared with periodic structure of one-dimensional short groove, in which 12-fold quasicrystal structure of one-dimensional short groove has the best drag reduction, and has an equal effect compared with one-dimensional periodic groove structure. An two-dimensional grating model is proposed to investigate the mechanism. It is found that in comparison with two-dimensional periodic grating, the intensity spectrum of coherent wave passing through two-dimensional quasiperiodic grating has several characteristic structure factors. Corresponding to the quasicrystal structures of one-dimensional short groove, the quasiperiodic structure in spanwise direction can activate little disturbance on boundary layer and make the secondary vortex more uniform, which restrains the strong disturbance in spanwise, consequently reducing the drag.-
Keywords:
- quasicrystal structure /
- drag reduction /
- two-dimensional grating model /
- characteristic structure factors
[1] Robert J P 1992 Special Coure Skip Friction Drag Reduction, AGARD Report 786 No. 2
[2] Matthias S, Stanislav G 2004 ????? (Berlin: Springer-Verlag) 68
[3] Walsh M J 1982 AIAA 82 0169
[4] Walsh M J, Lindemann A M 1984 AIAA- 84 0347
[5] Ball P 1999 Nature 400 507
[6] Koeltzsch K, Dinkelacker A, Grundmann R 2002 Exp Fluids 33 346
[7] Wang J J 1998 Journal of Beijing University of Aeronautics and Astronautics 24 31 (in Chinese) [王晋军 1998 北京航空航天大学学报 24 31]
[8] Kwing-So, Choi 2000 Fluid Dynamics Research 26 325
[9] Bushnell D M, Hefner J N 1990 Viscous Drag Reduction in Boundray Layers p203
[10] Bechert D W, Brus M 1997 Fluid Mech. 338 59
[11] Xue W H, Geng X G, Li F, Li J, Wu J 2010 Chin. Phys. Lett. 27 104703
[12] Gao P, Geng X G, Ou X L, Xue W H 2009 Acta Phys. Sin. 58 421 (in Chinese) [高鹏, 耿兴国, 欧修龙, 薛文辉 2009 58 421]
[13] Shechtman D, Blech I, Gratias D, Chan J W 1984 Phys. Rev. Lett. 53 1951
[14] Trebin H R 2003 Quasicrystals, Structure and Physical Properties (Weinheim: Wiley-VCH) ISBN 3-527-40399-X
[15] Han J H, Luo G, Qi Z M, Zhao Z Y 1999 Journal of Anhui University 23 18
[16] Jeong Young Park, Ogletree D F, Salmeron M, Ribeiro R A, Canfield P C, Jenks C J, Thiel P A 2006 Phys. Rev. B 74024203
[17] Guo K X 2004 Quasiperiodic Crystals (Hangzhou: Zhejiang Science and Technology Publishing House) 12 p70 (in Chinese) [郭可信 2004 准晶研究 (杭州:浙江科学技术出版社) 12 第70页]
[18] Fewell M E, Hellums J D 1977 Trans. Soc. Rheol 21 535
[19] Harish Shankaran, Sriram Neelamegham 2001 Biophysical Journal 80 2631
[20] Bacher E V, Smith C R 1985 AIAA Paper 85 0548
[21] Choi K S 1989 Journal of Fluid Mechanics 208 417
[22] Matsui T, Agrawal A, Nahata A, Vardeny Z, Valy 2007 Nature 446 517
-
[1] Robert J P 1992 Special Coure Skip Friction Drag Reduction, AGARD Report 786 No. 2
[2] Matthias S, Stanislav G 2004 ????? (Berlin: Springer-Verlag) 68
[3] Walsh M J 1982 AIAA 82 0169
[4] Walsh M J, Lindemann A M 1984 AIAA- 84 0347
[5] Ball P 1999 Nature 400 507
[6] Koeltzsch K, Dinkelacker A, Grundmann R 2002 Exp Fluids 33 346
[7] Wang J J 1998 Journal of Beijing University of Aeronautics and Astronautics 24 31 (in Chinese) [王晋军 1998 北京航空航天大学学报 24 31]
[8] Kwing-So, Choi 2000 Fluid Dynamics Research 26 325
[9] Bushnell D M, Hefner J N 1990 Viscous Drag Reduction in Boundray Layers p203
[10] Bechert D W, Brus M 1997 Fluid Mech. 338 59
[11] Xue W H, Geng X G, Li F, Li J, Wu J 2010 Chin. Phys. Lett. 27 104703
[12] Gao P, Geng X G, Ou X L, Xue W H 2009 Acta Phys. Sin. 58 421 (in Chinese) [高鹏, 耿兴国, 欧修龙, 薛文辉 2009 58 421]
[13] Shechtman D, Blech I, Gratias D, Chan J W 1984 Phys. Rev. Lett. 53 1951
[14] Trebin H R 2003 Quasicrystals, Structure and Physical Properties (Weinheim: Wiley-VCH) ISBN 3-527-40399-X
[15] Han J H, Luo G, Qi Z M, Zhao Z Y 1999 Journal of Anhui University 23 18
[16] Jeong Young Park, Ogletree D F, Salmeron M, Ribeiro R A, Canfield P C, Jenks C J, Thiel P A 2006 Phys. Rev. B 74024203
[17] Guo K X 2004 Quasiperiodic Crystals (Hangzhou: Zhejiang Science and Technology Publishing House) 12 p70 (in Chinese) [郭可信 2004 准晶研究 (杭州:浙江科学技术出版社) 12 第70页]
[18] Fewell M E, Hellums J D 1977 Trans. Soc. Rheol 21 535
[19] Harish Shankaran, Sriram Neelamegham 2001 Biophysical Journal 80 2631
[20] Bacher E V, Smith C R 1985 AIAA Paper 85 0548
[21] Choi K S 1989 Journal of Fluid Mechanics 208 417
[22] Matsui T, Agrawal A, Nahata A, Vardeny Z, Valy 2007 Nature 446 517
计量
- 文章访问数: 7025
- PDF下载量: 481
- 被引次数: 0