Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Deposition and thermal conductivity of diamond-like carbon film on a silicon substrate

Ai Li-Qiang Zhang Xiang-Xiong Chen Min Xiong Da-Xi

Citation:

Deposition and thermal conductivity of diamond-like carbon film on a silicon substrate

Ai Li-Qiang, Zhang Xiang-Xiong, Chen Min, Xiong Da-Xi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Diamond-Like Carbon (DLC) is thought to be a potential material in solving heat dissipation problems in light emitting diode module packages. It is of vital importance in evaluating the thermal conductivity of DLC film deposited on a silicon substrate. In this paper, the molecular dynamics method is used to simulate the formation of a DLC film by the deposition of carbon atoms on a isilicon substrate. Tersoff potential is adopted to reproduce the structures and densities of silicon, carbon, and SiC. A silicon substrate consisting of 544 atoms is located at the bottom of the simulation domain. The substrate is kept at a temperature of 600 K through a Noose-Hover thermostat. Carbon atoms are injected into the substrate individually every 0.5 ps at an energy of 1 eV. After a 7.5 ns deposition process, a 4 nm amorphous film containing 15000 carbon atoms is formed. Injected carbon atoms and substrate silicon atoms are intermixed at the bottom layer of the deposited film while the rest of the film contains only carbon atoms. The density of the film decreases slightly with the increase of the height of the deposited film and the average density is 2.8 g/cm3. Analysis of the coordination number shows that the sp3 fraction of carbon atoms in the film also decreases with the increase of the height of the deposited film, with a maximum value of 22%. It might be caused by the continuous impacts of the subsequently injected carbon atoms on the previously formed DLC film. The thermal conductivities of the DLC film in the planar and normal directions are calculated by the Green-Kubo method. The thermal conductivity of pure diamond film is also calculated for comparison. The results show that the planar thermal conductivity of the deposited DLC film is approximately half of that of the pure diamond film with the same size. It is higher than the normal thermal conductivity of the deposited film. The thermal conductivities of the DLC film in both planar and normal directions increase with the increase of film density and sp3 fraction in the DLC film. The results indicate that the local tetrahedral structure of sp3 carbon atoms contributes to the improvement of thermal conductivity in the DLC film.
      Corresponding author: Xiong Da-Xi, xiongdx@sibet.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51376191, 51321002).
    [1]

    Wang J, Liu G C, Li H L, Hou B R 2012 Acta Phys. Sin. 61 058102 (in Chinese) [王静, 刘贵昌, 李红玲, 侯保荣 2012 61 058102]

    [2]

    Song J M, Gan M J, Cai B Y 2012 J. Eng. Mater. Taiwan 304 124 (in Chinese) [宋健民, 甘明吉, 蔡百扬 2012 工业材料杂志(台湾) 304 124]

    [3]

    Balandin A A 2011 Nat. Mater. 10 569

    [4]

    Hu M H, Bi N, Li S S, Su T C, Zhou A G, Hu Q, Jia X P, Ma H A 2015 Chin. Phys. B 24 038101

    [5]

    Kaukonen H P, Nieminen R 1992 Phys. Rev. Lett. 68 620

    [6]

    Ma T B, Hu Y Z, Wang H 2007 Acta Phys. Sin. 56 480 (in Chinese) [马天宝, 胡元中, 王慧 2007 56 480]

    [7]

    Kim K S, Lee S H, Kim Y C, Lee S C, Cha P R, Lee K R 2008 Met. Mater. Int. 14 347

    [8]

    Murakami Y, Horiguchi S, Hamaguchi S 2010 Phys. Rev. E 81 041602

    [9]

    Joe M, Moon M W, Oh J, Lee K H, Lee K R 2012 Carbon 50 404

    [10]

    Wang N, Komvopoulos K 2014 J. Phys. D: Appl. Phys. 47 245303

    [11]

    Huang D M, Pu J B, Lu Z B, Xue Q J 2012 Surf. Interface Anal. 44 837

    [12]

    Li Z J, Pan Z Y, Wei Q, Du A J, Huang Z, Zhang Z X, Ye X S, Bai T, Wang C, Liu J R 2003 Eur. Phys. J. D 23 369

    [13]

    Li Z J 2004 Ph. D. Dissertation (Shanghai: Fudan University) (in Chinese) [李之杰2004 博士学位论文(上海: 复旦大学)]

    [14]

    Tersoff J 1989 Phys. Rev. B 39 5566

    [15]

    Brenner D W 1990 Phys. Rev. B 42 9458

    [16]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. Condes. Matter 14 783

    [17]

    Duin A C T V, Dasgupta S, Lorant F, Goddard W A 2001 J. Phys. Chem. A 105 9396

    [18]

    Verlet L 1967 Phys. Rev. 159 98

    [19]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [20]

    Evans D J, Hoover W G, Failor B H, Moran B, Ladd A J C 1983 Phys. Rev. A 28 1016

    [21]

    Frenkel D, Smit B 1996 Phys. Today 50 7

    [22]

    Lifshitz Y 1990 Phys. Rev. B 41 10468

    [23]

    Li X B, Tang D W, Zhu J 2008 J. Univ. Chin. Acad. Sci. 25 598 (in Chinese) [李小波, 唐大伟, 祝捷 2008 中国科学院大学学报 25 598]

    [24]

    Wu G Q, Kong X R, Sun Z W, Wang Y H 2006 J. Astrona. 27 751 (in Chinese) [吴国强, 孔宪仁, 孙兆伟, 王亚辉 2006 宇航学报 27 751]

    [25]

    Wang Y H, Liu L H, Kong X R 2006 J. Harbin Inst. Technol. 38 708 (in Chinese) [王亚辉, 刘林华, 孔宪仁 2006 哈尔滨工业大学学报 38 708]

    [26]

    Xu N, Li J F, Huang B L, Wang B L 2015 Chin. Phys. B 25 016103

    [27]

    Shamsa M, Liu W, Balandin A, Casiraghi C, Milne W, Ferrari A 2006 Appl. Phys. Lett. 89 161921

    [28]

    Ferrari A C, Libassi A, Tanner B K, Stolojan V, Yuan J, Brown L M, Rodil S E, Kleinsorge B, Robertson J 2000 Phys. Rev. B 62 11089

  • [1]

    Wang J, Liu G C, Li H L, Hou B R 2012 Acta Phys. Sin. 61 058102 (in Chinese) [王静, 刘贵昌, 李红玲, 侯保荣 2012 61 058102]

    [2]

    Song J M, Gan M J, Cai B Y 2012 J. Eng. Mater. Taiwan 304 124 (in Chinese) [宋健民, 甘明吉, 蔡百扬 2012 工业材料杂志(台湾) 304 124]

    [3]

    Balandin A A 2011 Nat. Mater. 10 569

    [4]

    Hu M H, Bi N, Li S S, Su T C, Zhou A G, Hu Q, Jia X P, Ma H A 2015 Chin. Phys. B 24 038101

    [5]

    Kaukonen H P, Nieminen R 1992 Phys. Rev. Lett. 68 620

    [6]

    Ma T B, Hu Y Z, Wang H 2007 Acta Phys. Sin. 56 480 (in Chinese) [马天宝, 胡元中, 王慧 2007 56 480]

    [7]

    Kim K S, Lee S H, Kim Y C, Lee S C, Cha P R, Lee K R 2008 Met. Mater. Int. 14 347

    [8]

    Murakami Y, Horiguchi S, Hamaguchi S 2010 Phys. Rev. E 81 041602

    [9]

    Joe M, Moon M W, Oh J, Lee K H, Lee K R 2012 Carbon 50 404

    [10]

    Wang N, Komvopoulos K 2014 J. Phys. D: Appl. Phys. 47 245303

    [11]

    Huang D M, Pu J B, Lu Z B, Xue Q J 2012 Surf. Interface Anal. 44 837

    [12]

    Li Z J, Pan Z Y, Wei Q, Du A J, Huang Z, Zhang Z X, Ye X S, Bai T, Wang C, Liu J R 2003 Eur. Phys. J. D 23 369

    [13]

    Li Z J 2004 Ph. D. Dissertation (Shanghai: Fudan University) (in Chinese) [李之杰2004 博士学位论文(上海: 复旦大学)]

    [14]

    Tersoff J 1989 Phys. Rev. B 39 5566

    [15]

    Brenner D W 1990 Phys. Rev. B 42 9458

    [16]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. Condes. Matter 14 783

    [17]

    Duin A C T V, Dasgupta S, Lorant F, Goddard W A 2001 J. Phys. Chem. A 105 9396

    [18]

    Verlet L 1967 Phys. Rev. 159 98

    [19]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [20]

    Evans D J, Hoover W G, Failor B H, Moran B, Ladd A J C 1983 Phys. Rev. A 28 1016

    [21]

    Frenkel D, Smit B 1996 Phys. Today 50 7

    [22]

    Lifshitz Y 1990 Phys. Rev. B 41 10468

    [23]

    Li X B, Tang D W, Zhu J 2008 J. Univ. Chin. Acad. Sci. 25 598 (in Chinese) [李小波, 唐大伟, 祝捷 2008 中国科学院大学学报 25 598]

    [24]

    Wu G Q, Kong X R, Sun Z W, Wang Y H 2006 J. Astrona. 27 751 (in Chinese) [吴国强, 孔宪仁, 孙兆伟, 王亚辉 2006 宇航学报 27 751]

    [25]

    Wang Y H, Liu L H, Kong X R 2006 J. Harbin Inst. Technol. 38 708 (in Chinese) [王亚辉, 刘林华, 孔宪仁 2006 哈尔滨工业大学学报 38 708]

    [26]

    Xu N, Li J F, Huang B L, Wang B L 2015 Chin. Phys. B 25 016103

    [27]

    Shamsa M, Liu W, Balandin A, Casiraghi C, Milne W, Ferrari A 2006 Appl. Phys. Lett. 89 161921

    [28]

    Ferrari A C, Libassi A, Tanner B K, Stolojan V, Yuan J, Brown L M, Rodil S E, Kleinsorge B, Robertson J 2000 Phys. Rev. B 62 11089

  • [1] Liu Xiu-Cheng, Yang Zhi, Guo Hao, Chen Ying, Luo Xiang-Long, Chen Jian-Yong. Molecular dynamics simulation of thermal conductivity of diamond/epoxy resin composites. Acta Physica Sinica, 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [2] Tang Dao-Sheng, Hua Yu-Chao, Zhou Yan-Guang, Cao Bing-Yang. Thermal conductivity modeling of GaN films. Acta Physica Sinica, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [3] Wang Shuo, Wang Wen-Hui, Lü Jun-Peng, Ni Zhen-Hua. Chemical vapor deposition growth of large-areas two dimensional materials: Approaches and mechanisms. Acta Physica Sinica, 2021, 70(2): 026802. doi: 10.7498/aps.70.20201398
    [4] Zhang Xiao-Bo, Qing Fang-Zhu, Li Xue-Song. Clean transfer of chemical vapor deposition graphene film. Acta Physica Sinica, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [5] Hui Zhi-Xin, He Peng-Fei, Dai Ying, Wu Ai-Hui. Molecular dynamics simulation of the thermal conductivity of silicon functionalized graphene. Acta Physica Sinica, 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [6] Yuan Si-Wei, Feng Yan-Hui, Wang Xin, Zhang Xin-Xin. Molecular dynamics simulation of thermal conductivity of mesoporous α-Al2O3. Acta Physica Sinica, 2014, 63(1): 014402. doi: 10.7498/aps.63.014402
    [7] Zheng Bo-Yu, Dong Hui-Long, Chen Fei-Fan. Characterization of thermal conductivity for GNR based on nonequilibrium molecular dynamics simulation combined with quantum correction. Acta Physica Sinica, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [8] Jiang Jin-Long, Huang Hao, Wang Qiong, Wang Shan-Min, Wei Zhi-Qiang, Yang Hua, Hao Jun-Ying. Effect of deposition temperature on growth, structure and mechanical properties of diamond-like carbon films co-doped by titanium and silicon. Acta Physica Sinica, 2014, 63(2): 028104. doi: 10.7498/aps.63.028104
    [9] Yang Ping, Wang Xiao-Liang, Li Pei, Wang Huang, Zhang Li-Qiang, Xie Fang-Wei. The effect of doped nitrogen and vacancy on thermal conductivity of graphenenanoribbon from nonequilibrium molecular dynamics. Acta Physica Sinica, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [10] Zhang Pei-Zeng, Li Rui-Shan, Xie Er-Qing, Yang Hua, Wang Xuan, Wang Tao, Feng You-Cai. The fabrication and field emission properties of ZnO nanoparticles-doped diamond-like carbon films by electrochemical deposition. Acta Physica Sinica, 2012, 61(8): 088101. doi: 10.7498/aps.61.088101
    [11] Lan Hui-Qing, Xu Cang. Molecular dynamics simulation on friction process of silicon-doped diamond-like carbon films. Acta Physica Sinica, 2012, 61(13): 133101. doi: 10.7498/aps.61.133101
    [12] Yang Ping, Wu Yong-Sheng, Xu Hai-Feng, Xu Xian-Xin, Zhang Li-Qiang, Li Pei. Molecular dynamics simulation of thermal conductivity for the TiO2/ZnO nano-film interface. Acta Physica Sinica, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [13] Quan Wei-Long, Li Hong-Xuan, Ji Li, Zhao Fei, Du Wen, Zhou Hui-Di, Chen Jian-Min. Molecular dynamical simulation on the mechanical property of hydrogenated diamond-like carbon films. Acta Physica Sinica, 2010, 59(8): 5687-5691. doi: 10.7498/aps.59.5687
    [14] Kai Hua, Li Yun-Chao, Guo De-Cheng, Li Shuang, Li Zhi-Jie. Molecular dynamics simulation of the structure characteristic of diamond-like carbon films influence by oblique incidence ion-beam-assisted deposition. Acta Physica Sinica, 2009, 58(7): 4888-4894. doi: 10.7498/aps.58.4888
    [15] Li Shi-Bin, Wu Zhi-Ming, Yuan Kai, Liao Nai-Man, Li Wei, Jiang Ya-Dong. Study on thermal conductivity of hydrogenated amorphous silicon films. Acta Physica Sinica, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
    [16] Wu Guo-Qiang, Kong Xian-Ren, Sun Zhao-Wei, Wang Ya-Hui. Molecular dynamics simulation on the out-of plane thermal conductivity of argon crystal thin films. Acta Physica Sinica, 2006, 55(1): 1-5. doi: 10.7498/aps.55.1
    [17] Ye Fan, Xie Er-Qing, Li Rui-Shan, Lin Hong-Feng, Zhang Jun, He De-Yan. Field emission properties of diamond-like carbon and carbon nitride films deposited by the electrochemical method. Acta Physica Sinica, 2005, 54(8): 3935-3939. doi: 10.7498/aps.54.3935
    [18] Yang Wu-Bao, Wang Jiu-Li, Zhang Gu-Ling, Fan Song-Hua, Liu Chi-Zi, Yang Si-Ze. Diamond-like carbon films deposited on optical glass substrate by using ECR microwave acetone plasma CVD method. Acta Physica Sinica, 2004, 53(9): 3099-3103. doi: 10.7498/aps.53.3099
    [19] Yu Wei, Liu Li-Hui, Hou Hai-Hong, Ding Xue-Cheng, Han Li, Fu Guang-Sheng. Silicon nitride films prepared by helicon wave plasam-enhanced chemical vapour deposition. Acta Physica Sinica, 2003, 52(3): 687-691. doi: 10.7498/aps.52.687
    [20] Mei Xian-Xiu, Xu Jun, Ma Teng-Cai. . Acta Physica Sinica, 2002, 51(8): 1875-1880. doi: 10.7498/aps.51.1875
Metrics
  • Abstract views:  8448
  • PDF Downloads:  331
  • Cited By: 0
Publishing process
  • Received Date:  16 November 2015
  • Accepted Date:  05 February 2016
  • Published Online:  05 May 2016

/

返回文章
返回
Baidu
map