-
利用Ag2O/PEDOT:PSS(聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸盐)作为复合阳极缓冲层,制备了P3HT:PCBM(聚(3-已基噻吩):富勒烯衍生物)聚合物太阳能电池器件,并通过改变氧化银插入层的厚度来分析复合缓冲层对器件性能的影响. 实验发现,具有阳极缓冲层修饰的器件在退火处理后,光伏性能得到了改善. 相比于单一PEDOT:PSS缓冲层的器件,Ag2O/PEDOT:PSS 复合缓冲层可以增大器件的短路电流密度和外量子效率,使器件效率得到提高. 分析表明,退火处理可以有效改善活性层的薄膜形貌,增加光的吸收和激子的解离,而较薄氧化银的引入,可以有效降低阳极处空穴的输运势垒,提高器件空穴收集效率,并能充当化学间隔层,提高器件光伏性能和稳定性.Ag2O/PEDOT:PSS used as the anode buffer layer is introduced into the P3HT:PCBM based polymer solar cell (PSC). Effect of the Ag2O/PEDOT:PSS composite anode buffer layer on the device performance is investigated. According to the results, we can find that the post-thermal annealing can improve the performance of the PSC with Ag2O/PEDOT:PSS anode buffer layer compare with that without buffer layer. In addition, compared with the devices without such a buffer layer or with only PEDOT:PSS buffer layer, the device with the composite buffer layer can achieve higher Jsc, external quantum efficiency as well as power conversion efficiency. We conclude that the post-thermal annealing can significantly improve the surface morphology which increases the light absorption and the exciton dissociation. The inserted Ag2O together with PEDOT:PSS as the composite buffer layer not only efficiently lowers the hole extraction barrier and improves the hole collection efficiency but also exhibits excellent stability.
-
Keywords:
- Ag2O nanodots /
- composite buffer layer /
- polymer solar cells /
- post-thermal annealing
[1] Sariciftci N S, Smilowitz L, Heeger A J, Wudl F 1992 Science 258 1474
[2] Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J 2007 Science 317 222
[3] Zhang C F, Tong S W, Jiang C Y, Kang E T, Chan D S H, Zhu C X 2008 Appl. Phys. Lett. 93 043307
[4] Zhang T H, Zhao S L, Piao L Y, Xu Z, Ju S T, Liu X D, Kong C, Xu X R 2011 Chin. Phys. B 20 038401
[5] Xiong C, Yao R H, Geng K W 2011 Chin. Phys. B 20 057302
[6] He Z C, Zhong C M, Su S J, Xu M, Wu H B, Cao Y 2012 Nat. Photon. 6 591
[7] Schlatmann A R, Floet D W, Hilberer A, Garten F, Smulders P J M, Klapwijk T M, Hadziioannou G 1996 Appl. Phys. Lett. 69 1764
[8] Yang Q Q, Zhao S L, Xu Z, Zhang F J, Yan G, Kong C, Fan X, Zhang Y F, Xu X R 2012 Chin. Phys. B 21 128402
[9] Goh C, Scully S R, McGehee M D 2007 J. Appl. Phys. 101 114503
[10] Xiao Z G, Zeng X S, Guo H M, Zhao Z F, Shi T F, Wang Y Q 2012 Acta Phys. Sin. 61 026802 (in chinese) [肖正国, 曾雪松, 郭浩民, 赵志飞, 史同飞, 王玉琦 2012 61 026802]
[11] Turak A, Aytun T, Ow-yang C W 2012 Appl. Phys. Lett. 100 253303
[12] Barik U K, Srinivasan S, Nagendra C L, Subrahmanyam A 2003 Thin Solid Films 429 129
[13] Chen C W, Hsieh P Y, Chiang H H, Lin C L, Wu H M, Wu C C 2003 Appl. Phys. Lett. 83 5127
[14] Hsieh S N, Kuo T Y, Chong L W, Wen T C, Yang F S, Guo T F, Chung C T 2009 IEEE Photonic. Tech. L 21 109
[15] de Jong M P, van Ijzendoorn L J, de Voigt M J A 2000 Appl. Phys. Lett. 77 2255
[16] Reese M O, Gevorgyan S A, Jorgensen M, Bundgaard E, Kurtz S R, Ginley D S, Olson D C, Lloyd M T, Moryillo P, Katz E A, Elschner A, Haillant O, Currier T R, Shrotriya V, Hermenau M, Riede M, Kirov K R, Trimmel G, Rath T, Inganas O, Zhang F L, Andersson M, Tvingstedt K, Lira Cantu M, Laird D, McGuiness C, Gowrisanker S, Pannone M, Xiao M, Hauch J, Steim R, DeLongchamp D M, Rosch R, Hoppe H, Espinosa N, Urbina A, Yaman-Uzunoglu G, Bonekamp J B, vanBreemen A J J M, Girotto C, Voroshazi E, Krebs F C 2011 Sol. Energy Mater. Sol. Cells 95 1253
[17] Jo J, Na S I, Kim S S, Lee T W, Chung Y, Kang S J, Vak D, Kim D Y 2009 Adv. Funct. Mater. 19 2398
[18] Li G, Shrotriya V, Yao Y, Yang Y 2005 J. Appl. Phys. 98 043704
-
[1] Sariciftci N S, Smilowitz L, Heeger A J, Wudl F 1992 Science 258 1474
[2] Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J 2007 Science 317 222
[3] Zhang C F, Tong S W, Jiang C Y, Kang E T, Chan D S H, Zhu C X 2008 Appl. Phys. Lett. 93 043307
[4] Zhang T H, Zhao S L, Piao L Y, Xu Z, Ju S T, Liu X D, Kong C, Xu X R 2011 Chin. Phys. B 20 038401
[5] Xiong C, Yao R H, Geng K W 2011 Chin. Phys. B 20 057302
[6] He Z C, Zhong C M, Su S J, Xu M, Wu H B, Cao Y 2012 Nat. Photon. 6 591
[7] Schlatmann A R, Floet D W, Hilberer A, Garten F, Smulders P J M, Klapwijk T M, Hadziioannou G 1996 Appl. Phys. Lett. 69 1764
[8] Yang Q Q, Zhao S L, Xu Z, Zhang F J, Yan G, Kong C, Fan X, Zhang Y F, Xu X R 2012 Chin. Phys. B 21 128402
[9] Goh C, Scully S R, McGehee M D 2007 J. Appl. Phys. 101 114503
[10] Xiao Z G, Zeng X S, Guo H M, Zhao Z F, Shi T F, Wang Y Q 2012 Acta Phys. Sin. 61 026802 (in chinese) [肖正国, 曾雪松, 郭浩民, 赵志飞, 史同飞, 王玉琦 2012 61 026802]
[11] Turak A, Aytun T, Ow-yang C W 2012 Appl. Phys. Lett. 100 253303
[12] Barik U K, Srinivasan S, Nagendra C L, Subrahmanyam A 2003 Thin Solid Films 429 129
[13] Chen C W, Hsieh P Y, Chiang H H, Lin C L, Wu H M, Wu C C 2003 Appl. Phys. Lett. 83 5127
[14] Hsieh S N, Kuo T Y, Chong L W, Wen T C, Yang F S, Guo T F, Chung C T 2009 IEEE Photonic. Tech. L 21 109
[15] de Jong M P, van Ijzendoorn L J, de Voigt M J A 2000 Appl. Phys. Lett. 77 2255
[16] Reese M O, Gevorgyan S A, Jorgensen M, Bundgaard E, Kurtz S R, Ginley D S, Olson D C, Lloyd M T, Moryillo P, Katz E A, Elschner A, Haillant O, Currier T R, Shrotriya V, Hermenau M, Riede M, Kirov K R, Trimmel G, Rath T, Inganas O, Zhang F L, Andersson M, Tvingstedt K, Lira Cantu M, Laird D, McGuiness C, Gowrisanker S, Pannone M, Xiao M, Hauch J, Steim R, DeLongchamp D M, Rosch R, Hoppe H, Espinosa N, Urbina A, Yaman-Uzunoglu G, Bonekamp J B, vanBreemen A J J M, Girotto C, Voroshazi E, Krebs F C 2011 Sol. Energy Mater. Sol. Cells 95 1253
[17] Jo J, Na S I, Kim S S, Lee T W, Chung Y, Kang S J, Vak D, Kim D Y 2009 Adv. Funct. Mater. 19 2398
[18] Li G, Shrotriya V, Yao Y, Yang Y 2005 J. Appl. Phys. 98 043704
计量
- 文章访问数: 6596
- PDF下载量: 1435
- 被引次数: 0