-
A normal distribution random force field is introduced into the study of granular flow, and its effect is observed by computer simulations. The results show that the random force almost does not cause changes in average density and velocity in a uniform granular flow, and affects little the fluctuation of the density. The main effect of the random force field is that it increases the fluctuation of the granular velocity and maintains the granular flow at a certain dispersed kinetic energy by competing with the dissipation of the granular system. It is also shown that the dispersed kinetic energy obtained by the random force field is not equally distributed in each degree of freedom, and that the equipartition of energy is difficult to realize in granular system because of its dissipation property.
-
Keywords:
- granular matter /
- random force /
- molecular dynamics simulation
[1] Duran J 1999 Sand, Power, and Grains, An Introduction to the Physics of Granular Materials (New York: Springer)
[2] Jaeger H M, Nagel S R 1996 Rev. Mod. Phys. 68 1259
[3] Kadanoff L P 1996 Rev. Mod. Phys. 71 435
[4] Campbell C S 1990 Annu. Rev. Fluid Mech. 22 57
[5] Goldhirsch I 1999 Chaos 9 659
[6] Beverloo W A, Lenginer H A, van de Velde J 1961 Chem. Eng. Sci. 15 260
[7] Brown R L, Richards J C 1960 Trans. Instn. Chem. Engrs. 38 24
[8] Baxter G W, Behringer R P 1989 Phys. Rev. Lett. 62 2825
[9] Horluck S, Dimon P 2002 Phys. Rev. E 63 031301
[10] Shen H H, Sankaran B 2004 Phys. Rev. E 70 051308
[11] Huang D C, Sun G, Lu K Q 2006 Phys. Rev. E 74 061306
[12] Huang D C, Sun G, Lu K Q 2011 Phys. Lett. A 375 3375
[13] To K, Lai P K, Pak H K 2001 Phys. Rev. Lett. 86 71
[14] Goldhirsch I 2008 Powder Tech. 182 130
[15] Campbell C S 2006 Powder Tech. 162 208
[16] Spahn F, Hertzsch J M, Brilliantov N V 1995 Chaos Soliton. Fract. 5 1945
[17] Hertzsch J M, Spahn F, Brilliantov N V 1995 J. Phys. II 5 1725
[18] Brilliantov N V, Spahn F, Hertzsch J M, Pöschel T 1996 Phys. Rev. E 53 5382
[19] Schwager T, Poschel T 1998 Phys. Rev. E 57 650
[20] Taguchi Y H 1992 J. Phys. II 2 2103
[21] Melin S 1994 Phys. Rev. E 49 2353
-
[1] Duran J 1999 Sand, Power, and Grains, An Introduction to the Physics of Granular Materials (New York: Springer)
[2] Jaeger H M, Nagel S R 1996 Rev. Mod. Phys. 68 1259
[3] Kadanoff L P 1996 Rev. Mod. Phys. 71 435
[4] Campbell C S 1990 Annu. Rev. Fluid Mech. 22 57
[5] Goldhirsch I 1999 Chaos 9 659
[6] Beverloo W A, Lenginer H A, van de Velde J 1961 Chem. Eng. Sci. 15 260
[7] Brown R L, Richards J C 1960 Trans. Instn. Chem. Engrs. 38 24
[8] Baxter G W, Behringer R P 1989 Phys. Rev. Lett. 62 2825
[9] Horluck S, Dimon P 2002 Phys. Rev. E 63 031301
[10] Shen H H, Sankaran B 2004 Phys. Rev. E 70 051308
[11] Huang D C, Sun G, Lu K Q 2006 Phys. Rev. E 74 061306
[12] Huang D C, Sun G, Lu K Q 2011 Phys. Lett. A 375 3375
[13] To K, Lai P K, Pak H K 2001 Phys. Rev. Lett. 86 71
[14] Goldhirsch I 2008 Powder Tech. 182 130
[15] Campbell C S 2006 Powder Tech. 162 208
[16] Spahn F, Hertzsch J M, Brilliantov N V 1995 Chaos Soliton. Fract. 5 1945
[17] Hertzsch J M, Spahn F, Brilliantov N V 1995 J. Phys. II 5 1725
[18] Brilliantov N V, Spahn F, Hertzsch J M, Pöschel T 1996 Phys. Rev. E 53 5382
[19] Schwager T, Poschel T 1998 Phys. Rev. E 57 650
[20] Taguchi Y H 1992 J. Phys. II 2 2103
[21] Melin S 1994 Phys. Rev. E 49 2353
Catalog
Metrics
- Abstract views: 6670
- PDF Downloads: 655
- Cited By: 0