-
In this paper, the multi-disperse systems composed of 2048 frictionless particles with different size polydispersities are simulated by using the distinct element method, and effects of size polydispersity on mechanical and geometrical properties of these systems are studied under isotropic confining. The result shows that changing polydispersity can qualitatively affect the coordination number, shear modulus, static structure factor and orientational order correlation function, but it does not influence the cumulative force distribution. At small wave number k, static structure factor of mono-disperse systems shows the power scaling law S(k)∝0.2k-4/3. Moreover, the peak of orientational order correlation function exhibits an exponent scaling law g6 (r)∝ae-r/ξ6, and the scaling exponent ξ6 decreases with polydispersity increasing.
-
Keywords:
- granular matter /
- size polydispersity /
- structure factor /
- orientational order correlation
[1] Silbert L E, Silbert M 2009 Phys. Rev. E 80 041304
[2] Xu N, Ching E S C 2010 Soft Matter 6 2944
[3] Han Y, Ha N Y, Alsayed A M, Yodh A G 2008 Phys. Rev. E 77 041406
[4] Artoni R, Santomaso A C, Gabrieli F, Tono D, Cola S 2013 Phys. Rev. E 87 032205
[5] Peng Y, Wang Z, Alsayed A M, Yodh A G, Han Y 2010 Phys. Rev. Lett. 104 205703
[6] Meyer H, Schulmann N, Zabel J E, Wittmer J P 2011 Comput. Phys. Commun. 182 1949
[7] Wen P P, Zheng N, Li L S, Li H, Sun G, Shi Q F 2012 Phys. Rev. E 85 031301
[8] Yang J K, Schreck C, Noh H, Liew S F, Guy M I, O’Hern C S, Cao H 2010 Phys. Rev. A 82 053838
[9] Xu W S, Sun Z Y, An L J 2012 J. Chem. Phys. 137 104509
[10] Berthier L, Chaudhuri P, Coulais C, Dauchot O, Sollich P 2011 Phys. Rev. Lett. 106 120601
[11] Paulus M, Gutt C, Tolan M 2008 Phys. Rev. B 78 235419
[12] Donev A, Stillinger F H, Torquato S 2005 Phys. Rev. Lett. 95 090604
[13] Torquato S, Stillinger F H 2003 Phys. Rev. E 68 041113
[14] Warr S, Hansen J P 1996 Europhys. Lett. 36 589
[15] Maier B, Rädler J O 1999 Phys. Rev. Lett. 82 1911
[16] Schreck C F, O’Hern C S, Silbert L E 2011 Phys. Rev. E 84 011305
[17] Agarwal U, Escobedo F A 2012 Soft Matter 8 5916
[18] Prestipino S, Saija F, Giaquinta P V 2011 Phys. Rev. Lett. 106 235701
[19] Bakker A F, Bruin C, Hilhorst H J 1984 Phys. Rev. Lett. 52 449
[20] Charbonneau P, Corwin E I, Parisi G, Zamponi F 2012 Phys. Rev. Lett. 109 205501
-
[1] Silbert L E, Silbert M 2009 Phys. Rev. E 80 041304
[2] Xu N, Ching E S C 2010 Soft Matter 6 2944
[3] Han Y, Ha N Y, Alsayed A M, Yodh A G 2008 Phys. Rev. E 77 041406
[4] Artoni R, Santomaso A C, Gabrieli F, Tono D, Cola S 2013 Phys. Rev. E 87 032205
[5] Peng Y, Wang Z, Alsayed A M, Yodh A G, Han Y 2010 Phys. Rev. Lett. 104 205703
[6] Meyer H, Schulmann N, Zabel J E, Wittmer J P 2011 Comput. Phys. Commun. 182 1949
[7] Wen P P, Zheng N, Li L S, Li H, Sun G, Shi Q F 2012 Phys. Rev. E 85 031301
[8] Yang J K, Schreck C, Noh H, Liew S F, Guy M I, O’Hern C S, Cao H 2010 Phys. Rev. A 82 053838
[9] Xu W S, Sun Z Y, An L J 2012 J. Chem. Phys. 137 104509
[10] Berthier L, Chaudhuri P, Coulais C, Dauchot O, Sollich P 2011 Phys. Rev. Lett. 106 120601
[11] Paulus M, Gutt C, Tolan M 2008 Phys. Rev. B 78 235419
[12] Donev A, Stillinger F H, Torquato S 2005 Phys. Rev. Lett. 95 090604
[13] Torquato S, Stillinger F H 2003 Phys. Rev. E 68 041113
[14] Warr S, Hansen J P 1996 Europhys. Lett. 36 589
[15] Maier B, Rädler J O 1999 Phys. Rev. Lett. 82 1911
[16] Schreck C F, O’Hern C S, Silbert L E 2011 Phys. Rev. E 84 011305
[17] Agarwal U, Escobedo F A 2012 Soft Matter 8 5916
[18] Prestipino S, Saija F, Giaquinta P V 2011 Phys. Rev. Lett. 106 235701
[19] Bakker A F, Bruin C, Hilhorst H J 1984 Phys. Rev. Lett. 52 449
[20] Charbonneau P, Corwin E I, Parisi G, Zamponi F 2012 Phys. Rev. Lett. 109 205501
Catalog
Metrics
- Abstract views: 7005
- PDF Downloads: 514
- Cited By: 0