搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于连续数值模拟的筒仓卸载过程中颗粒物压强及其速度场分析

周益娴

引用本文:
Citation:

基于连续数值模拟的筒仓卸载过程中颗粒物压强及其速度场分析

周益娴

Analysis of the granular pressure and velocity field of hourglass flow based on the local constitutive law

Zhou Yi-Xian
PDF
HTML
导出引用
  • 应用基于局部本构理论的连续数值模拟方法, 研究出口在底部和侧面的颗粒物在类三维矩形容器内的卸载现象. 重点是容器厚度W和出口高度D对颗粒物压强与速度的影响. 受力分析和数值模拟结果均表明, 距离出口较近区域的颗粒物压强与WD呈现如下相关性: 当D/W足够小时, 压强只与D相关; 当D/W足够大时, 压强只与W相关. 且出口在底部和侧面时均有上述结果. 模拟结果还显示, 当出口在底部时, 对于模拟中所有D/W值, 出口中心处法向速度只和D相关; 当出口在侧面时, 颗粒物出口中心处法向速度则与压强变化规律一致. 由此可见, 出口处的压强并不控制颗粒物的出口法向速度. 另外, 与出口在侧面相比, 出口在底部时, 造成流量相关性规律改变的D/W临界值较大, 一般实际情况无法满足, 因此出口中心处法向速度只与D相关, 始终满足Beverloo定律.
    Granular medium is ubiquitous in nature, and is an important issue in many infrastructural construction projects. In particular, the gravity discharge of fine particles from a silo constitutes an important problem of research, because of its many industrial applications. However, the physical mechanism of this system remains unclear. In this work, we study the discharge of silo from the bottom or lateral orifice, by performing pseudo-three-dimensional (3D) continuum simulations based on the local constitutive theory. The simulation is two-dimensional (2D), in order to study the 3D silo, we add the lateral frictional force in the averaged momentum equation. For a rectangular silo with an orifice of height $D$ and the silo thickness $W$, we study the influence of the orifice size ($W$ and $D$) on the granular pressure and velocity. The force analysis and simulation results reveal that for the relation between the granular pressure and the orifice size, there exist two regimes: when $D/W$ is small enough, the pressure near the orifice varies only with $D$; when $D/W$ is large enough, the pressure varies only with $W$. These scaling laws are the same for both bottom and lateral orifice. Somewhat surprisingly, the simulation results also show that when the orifice is at the bottom, the scaling law of the vertical velocity is different from that of the pressure; when it is on the lateral side, the scaling law of the horizontal velocity is consistent with that of the pressure. This observation contradicts a hypothesis that the flow rate of discharge is controlled by the granular pressure near the orifice, and validates the recent experimental results reported in the literature. Furthermore, the relationship between the vertical velocity and the orifice size reveals that when the orifice is at the bottom, the critical value of $D/W$ for the transition of regime is much larger than the lateral orifice case, the flow rate will depend only on $W$ when $D/W\gg50$. This condition is hardly satisfied in practice, so the new scaling law has not yet been observed for the bottom orifice case in the literature. Furthermore, this work demonstrates that the stagnant zone has an important effect on the discharge of silo, especially for the lateral orifice case. Since a non-local constitutive law can well describe the quasi-static flow, it will be interesting to modify the local constitutive model into a non-local constitutive model, and to compare the results from the two models.
      通信作者: 周益娴, yixian.zhou@ncepu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11802094)和中央高校基本科研业务费(批准号: 2018MS043)资助的课题.
      Corresponding author: Zhou Yi-Xian, yixian.zhou@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 11802094)and the Fundamental Research Fund for the Central Universities, China(Grant No. 2018MS043).
    [1]

    Andreotti B, Forterre Y, Pouliquen O 2013 Granular Media: Between Fluid and Solid (Cambridge: Cambridge University Press) p1

    [2]

    陆坤权, 刘寄星 2004 物理 33 629Google Scholar

    Lu K Q, Liu J X 2004 Physics 33 629Google Scholar

    [3]

    Radjai F, Dubois F 2011 Discrete-element Modeling of Granular Materials (London: Wiley-Iste) p425

    [4]

    Midi G D R 2004 Eur. Phys. J. E 14 341Google Scholar

    [5]

    Jop P, Forterre Y, Pouliquen O 2006 Nature 441 727Google Scholar

    [6]

    Lagree P Y, Staron L, Popinet S 2011 J. Fluid Mech. 686 378Google Scholar

    [7]

    Staron L, Lagree P Y, Popinet S 2012 Phys. Fluids 24 103301Google Scholar

    [8]

    Staron L, Lagree P Y, Popinet S 2014 Eur. Phys. J. E 37 1Google Scholar

    [9]

    Andreotti B, Forterre Y, Pouliquen O 2013 Granular Media: Between Fluid and Solid (Cambridge: Cambridge University Press) pp239-246

    [10]

    Andreotti B, Forterre Y, Pouliquen O 2013 Granular Media: Between Fluid and Solid (Cambridge: Cambridge University Press) pp87-91

    [11]

    Sperl M 2006 Granular Matter 8 59Google Scholar

    [12]

    Perge C, Aguirre M A, Gago P A, Pugnaloni L A, Le Tourneau D, Géminard J C 2012 Phys. Rev. E 85 021303Google Scholar

    [13]

    Aguirre M A, Grande J G, Calvo A, Pugnaloni L A, Géminard J C 2011 Phys. Rev. E 83 061305Google Scholar

    [14]

    Beverloo W A, Leniger H A, De Velde J V 1961 J. Chem. Eng. Sci. 15 260Google Scholar

    [15]

    Sheldon H G, Durian D J 2010 Granular Matter 12 579Google Scholar

    [16]

    Thomas C C, Durian D J 2015 Phys. Rev. Lett. 114 178001Google Scholar

    [17]

    张昱, 韦艳芳, 彭政, 蒋亦民, 段文山, 厚美瑛 2011 65 084502Google Scholar

    Zhang Y, Wei Y F, Peng Z, Jiang Y M, Duan W S, Hou M Y 2011 Acta Phys. Sin. 65 084502Google Scholar

    [18]

    Zhou Y, Lagree P Y, Popinet S, Aussillous P, Ruyer P 2017 J. Fluid Mech. 829 459Google Scholar

    [19]

    Lagree P Y 2007 Math. Mech. 87 486Google Scholar

    [20]

    Jop P, Forterre Y, Pouliquen O 2005 J. Fluid Mech. 541 167Google Scholar

    [21]

    Popinet S 2009 J. Comput. Phys. 228 5838Google Scholar

    [22]

    Janda A, Zuriguel I, Maza D 2012 Phys. Rev. Lett. 108 248001Google Scholar

    [23]

    Benyamine M, Djermane M, Dalloz-Dubrujeaud B, Aussillous P 2014 Phys. Rev. E 90 032201Google Scholar

    [24]

    Kamrin K, Koval G 2012 Phys. Rev. Lett. 108 178301Google Scholar

  • 图 1  Zhou等实验所用矩形筒仓示意图(取自文献[18])

    Fig. 1.  Schematic apparatus of the rectangular silo used by Zhou et al. (extracted from Ref.[18]).

    图 2  $ D = 0.3125L $以及$ W = 0.25L $情况下$ t/\sqrt{L/g} = 4 $时刻连续数值模拟结果, 从左至右: 容器内压强与其最大值之比; 竖直方向速度与其最大值之比, 其中黑色实线表示颗粒物流线; 无量纲常数$ I = d\sqrt{2}D_2/(\sqrt{p/\rho}) $

    Fig. 2.  Continuum simulation results with $ D = 0.3125L $ and $ W = 0.25L $ at time $ t/\sqrt{L/g} = 4 $, from the left to the right: pressure $ p^{\rm p} $ normalized by it's maximum value within the silo; the vertical velocity $ v^{\rm p} $ normalized by it's maximum value within the silo, the black lines represent the streamlines; dimensionless number $ I = d\sqrt{2}D_2/(\sqrt{p/\rho}) $.

    图 3  出口在底部情况下容器内不同区域受力图

    Fig. 3.  Force diagram of different zones within the silo for the case with orifice at the bottom.

    图 4  $ W $不同的情况下距离出口$ D $处的颗粒物压强$ p^{\rm p}(D) $结果 (a) 无量纲化压强$ p^{\rm p}(D)/(\rho g L) $随无量纲化出口尺寸$ D/L $的变化; (b) 无量纲化压强$ p^{\rm p}(D)/(\rho g D) $随无量纲化出口尺寸$ D/W $的变化

    Fig. 4.  Results of granular pressure at the distance $ D $ from the orifice $ p^{\rm p}(D) $ for various $ W $: (a) Dimensionless pressure $ p^{\rm p}(D)/(\rho g L) $ vs dimensionless orifice size $ D/L $; (b) dimensionless pressure $ p^{\rm p}(D)/(\rho g D) $ vs dimensionless orifice size $ D/W $.

    图 5  $ W $不同的情况下位于出口处中心线的竖直方向速度$ v^{\rm p}_0 $结果 (a) 无量纲化速度$ {v^{\rm p}_0}^2/(2gL) $随无量纲化出口尺寸$ D/L $的变化; (b) 无量纲化速度$ {v^{\rm p}_0}^2/(2gW) $随无量纲化出口尺寸$ D/W $的变化

    Fig. 5.  Results of vertical velocity on the central streamline $ v^{\rm p}_0 $ for various $ W $: (a) Dimensionless vertical velocity $ {v^{\rm p}_0}^2/(2gL) $ vs dimensionless orifice size $ D/L $; (b) dimensionless vertical velocity $ {v^{\rm p}_0}^2/(2gW) $ vs dimensionless orifice size $ D/W $.

    图 6  $ D = 0.40125L $以及$ W = 0.25L $情况下$ t/\sqrt{L/g} = 4 $时刻连续数值模拟结果, 从左至右: 容器内压强与其最大值之比; 总速度与其最大值之比, 其中黑色实线表示颗粒物流线; 无量纲常数$ I = d\sqrt{2}D_2/(\sqrt{p/\rho}) $

    Fig. 6.  Continuum simulation results with $ D = 0.40125L $ and $ W = 0.25L $ at time $ t/\sqrt{L/g} = 4 $, from the left to the right: pressure $ p^{\rm p} $ normalized by it's maximum value within the silo; the total velocity $ U^p $ normalized by it's maximum value within the silo, the black lines represent the streamlines; dimensionless number $ I = d\sqrt{2}D_2/(\sqrt{p/\rho}) $.

    图 7  出口在侧面情况下容器内不同区域受力图, 图中阴影部分代表颗粒物停滞区域

    Fig. 7.  Force diagram of different zones within the silo for the case with lateral orifice, the dashed area represents the stagnant zone.

    图 8  $ W $不同的情况下距离出口$ D $处的颗粒物压强$ p^{\rm p}(D) $结果 (a) 无量纲化压强$ p^{\rm p}(D)/(\rho g L) $随无量纲化出口尺寸$ D/L $的变化; (b) 无量纲化压强$ p^{\rm p}(D)/(\rho g D) $随无量纲化出口尺寸$ D/W $的变化

    Fig. 8.  Results of granular pressure at the distance $ D $ from the orifice $ p^{\rm p}(D) $ for various $ W $: (a) Dimensionless pressure $ p^{\rm p}(D)/(\rho g L) $ vs. dimensionless orifice size $ D/L $; (b) dimensionless pressure $ p^{\rm p}(D)/(\rho g D) $ vs. dimensionless orifice size $ D/W $.

    图 9  $ W $不同的情况下位于出口处中心流线上速度结果 (a) 无量纲化总速度$ {U_0^{\rm p}}^2/(2gL) $随无量纲化出口尺寸$ D/L $的变化; (b) 速度倾斜角$ {\rm {sin}} \theta $随无量纲化出口尺寸$ D/W $的变化

    Fig. 9.  Results of velocity on the central streamline at the orifice for various $ W $: (a) Dimensionless total velocity $ {U_0^{\rm p}}^2/(2gL) $ vs dimensionless orifice size $ D/L $; (b) angle of inclination $ {\rm {sin}} \theta $ vs dimensionless orifice size $ D/W $.

    表 1  容器及颗粒物的尺寸

    Table 1.  Size of silo and particle.

    $h_p$ 4L
    $D$ [0.3125, 0.40125, 0.4375, 0.5, 0.5938,
    0.625, 0.6562, 0.6875, 0.75]L
    $W$ [0.16, 0.2, 0.25, 0.5, 1, 2]L
    $d$ $L/90$
    下载: 导出CSV
    Baidu
  • [1]

    Andreotti B, Forterre Y, Pouliquen O 2013 Granular Media: Between Fluid and Solid (Cambridge: Cambridge University Press) p1

    [2]

    陆坤权, 刘寄星 2004 物理 33 629Google Scholar

    Lu K Q, Liu J X 2004 Physics 33 629Google Scholar

    [3]

    Radjai F, Dubois F 2011 Discrete-element Modeling of Granular Materials (London: Wiley-Iste) p425

    [4]

    Midi G D R 2004 Eur. Phys. J. E 14 341Google Scholar

    [5]

    Jop P, Forterre Y, Pouliquen O 2006 Nature 441 727Google Scholar

    [6]

    Lagree P Y, Staron L, Popinet S 2011 J. Fluid Mech. 686 378Google Scholar

    [7]

    Staron L, Lagree P Y, Popinet S 2012 Phys. Fluids 24 103301Google Scholar

    [8]

    Staron L, Lagree P Y, Popinet S 2014 Eur. Phys. J. E 37 1Google Scholar

    [9]

    Andreotti B, Forterre Y, Pouliquen O 2013 Granular Media: Between Fluid and Solid (Cambridge: Cambridge University Press) pp239-246

    [10]

    Andreotti B, Forterre Y, Pouliquen O 2013 Granular Media: Between Fluid and Solid (Cambridge: Cambridge University Press) pp87-91

    [11]

    Sperl M 2006 Granular Matter 8 59Google Scholar

    [12]

    Perge C, Aguirre M A, Gago P A, Pugnaloni L A, Le Tourneau D, Géminard J C 2012 Phys. Rev. E 85 021303Google Scholar

    [13]

    Aguirre M A, Grande J G, Calvo A, Pugnaloni L A, Géminard J C 2011 Phys. Rev. E 83 061305Google Scholar

    [14]

    Beverloo W A, Leniger H A, De Velde J V 1961 J. Chem. Eng. Sci. 15 260Google Scholar

    [15]

    Sheldon H G, Durian D J 2010 Granular Matter 12 579Google Scholar

    [16]

    Thomas C C, Durian D J 2015 Phys. Rev. Lett. 114 178001Google Scholar

    [17]

    张昱, 韦艳芳, 彭政, 蒋亦民, 段文山, 厚美瑛 2011 65 084502Google Scholar

    Zhang Y, Wei Y F, Peng Z, Jiang Y M, Duan W S, Hou M Y 2011 Acta Phys. Sin. 65 084502Google Scholar

    [18]

    Zhou Y, Lagree P Y, Popinet S, Aussillous P, Ruyer P 2017 J. Fluid Mech. 829 459Google Scholar

    [19]

    Lagree P Y 2007 Math. Mech. 87 486Google Scholar

    [20]

    Jop P, Forterre Y, Pouliquen O 2005 J. Fluid Mech. 541 167Google Scholar

    [21]

    Popinet S 2009 J. Comput. Phys. 228 5838Google Scholar

    [22]

    Janda A, Zuriguel I, Maza D 2012 Phys. Rev. Lett. 108 248001Google Scholar

    [23]

    Benyamine M, Djermane M, Dalloz-Dubrujeaud B, Aussillous P 2014 Phys. Rev. E 90 032201Google Scholar

    [24]

    Kamrin K, Koval G 2012 Phys. Rev. Lett. 108 178301Google Scholar

  • [1] 蒋亦民, 刘佑. 颗粒-颗粒接触力的热力学模型.  , 2018, 67(4): 044502. doi: 10.7498/aps.67.20171441
    [2] 程琦, 冉宪文, 刘苹, 汤文辉, Raphael Blumenfeld. 颗粒物质内自旋小球运动行为的数值模拟研究.  , 2018, 67(1): 014702. doi: 10.7498/aps.67.20171459
    [3] 刘晓宇, 张国华, 孙其诚, 赵雪丹, 刘尚. 二维圆盘颗粒体系声学行为的数值研究.  , 2017, 66(23): 234501. doi: 10.7498/aps.66.234501
    [4] 许聪慧, 张国华, 钱志恒, 赵雪丹. 水平激励下颗粒物质的有效质量及耗散功率的研究.  , 2016, 65(23): 234501. doi: 10.7498/aps.65.234501
    [5] 张攀, 赵雪丹, 张国华, 张祺, 孙其诚, 侯志坚, 董军军. 垂直载荷下颗粒物质的声波探测和非线性响应.  , 2016, 65(2): 024501. doi: 10.7498/aps.65.024501
    [6] 苏涛, 冯耀东, 赵宏武, 黄德财, 孙刚. 对颗粒物质运动的一致性进行控制的随机力场.  , 2013, 62(16): 164502. doi: 10.7498/aps.62.164502
    [7] 何克晶, 张金成, 周晓强. 运动物体在颗粒物质中的动力学过程及最大穿透深度仿真研究.  , 2013, 62(13): 130204. doi: 10.7498/aps.62.130204
    [8] 彭政, 蒋亦民, 刘锐, 厚美瑛. 垂直振动激发下颗粒物质的能量耗散.  , 2013, 62(2): 024502. doi: 10.7498/aps.62.024502
    [9] 陆坤权, 厚美瑛, 姜泽辉, 王强, 孙刚, 刘寄星. 以颗粒物理原理认识地震地震成因、地震前兆和地震预测.  , 2012, 61(11): 119103. doi: 10.7498/aps.61.119103
    [10] 彭亚晶, 张卓, 王勇, 刘小嵩. 振动颗粒物质“巴西果”分离效应实验和理论研究.  , 2012, 61(13): 134501. doi: 10.7498/aps.61.134501
    [11] 季顺迎, 李鹏飞, 陈晓东. 冲击荷载下颗粒物质缓冲性能的试验研究.  , 2012, 61(18): 184703. doi: 10.7498/aps.61.184703
    [12] 毕忠伟, 孙其诚, 刘建国, 金峰, 张楚汉. 双轴压缩下颗粒物质剪切带的形成与发展.  , 2011, 60(3): 034502. doi: 10.7498/aps.60.034502
    [13] 孔维姝, 胡林, 张兴刚, 岳国联. 颗粒堆的体积分数与制备流量关系的实验研究.  , 2010, 59(1): 411-416. doi: 10.7498/aps.59.411
    [14] 姜泽辉, 荆亚芳, 赵海发, 郑瑞华. 振动颗粒物质中倍周期运动对尺寸分离的影响.  , 2009, 58(9): 5923-5929. doi: 10.7498/aps.58.5923
    [15] 张 航, 郭蕴博, 陈 骁, 王 端, 程鹏俊. 颗粒物质在冲击作用下的堆积分布.  , 2007, 56(4): 2030-2036. doi: 10.7498/aps.56.2030
    [16] 杜学能, 胡 林, 孔维姝, 王伟明, 吴 宇. 颗粒物质内部滑动摩擦力的非线性振动现象.  , 2006, 55(12): 6488-6493. doi: 10.7498/aps.55.6488
    [17] 韩汝取, 史庆藩, 孙 刚. 声波在一维易膨胀介质中传播的计算机模拟.  , 2005, 54(5): 2188-2193. doi: 10.7498/aps.54.2188
    [18] 姜泽辉, 李 斌, 赵海发, 王运鹰, 戴智斌. 竖直振动颗粒物厚层中冲击力分岔现象.  , 2005, 54(3): 1273-1278. doi: 10.7498/aps.54.1273
    [19] 胡国琦, 张训生, 鲍德松, 唐孝威. 二维颗粒流通道宽度效应的分子动力学模拟.  , 2004, 53(12): 4277-4281. doi: 10.7498/aps.53.4277
    [20] 胡 林, 杨 平, 徐 亭, 江 阳, 须海江, 龙 为, 杨昌顺, 张 弢, 陆坤权. 颗粒物质中圆棒受到的静摩擦力.  , 2003, 52(4): 879-882. doi: 10.7498/aps.52.879
计量
  • 文章访问数:  7199
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-17
  • 修回日期:  2019-04-08
  • 上网日期:  2019-06-06
  • 刊出日期:  2019-07-05

/

返回文章
返回
Baidu
map