搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化镁纳米多晶的微结构和磁性

范巍 曾雉

引用本文:
Citation:

氧化镁纳米多晶的微结构和磁性

范巍, 曾雉

Magnetism of MgO nanoparticles

Fan Wei, Zeng Zhi
PDF
导出引用
  • 实验发现,宏观晶体是非磁性的氧化镁时,其多晶样品有弱铁磁性. 本文用第一性原理电子结构方法研究了氧化镁表面、纳米颗粒和晶界的磁性. 计算结果表明: 绝缘的氧化镁表面可以是导电的,并且有与之相关的铁磁性;磁性表面的共同特征是在表面上有氧原子富集,包括(111)表面的纯氧原子层,(114)表面的氧原子链;其他高晶面指数表面也会有氧原子富集区域;氧化镁纳米颗粒的磁性出现在高晶面指数表面以及不同晶面交界的棱及其顶角等有氧原子富集的区域,这种由氧原子富集而形成的磁性有巡游特征. 氧化镁∑7[111]和∑ 5[001]晶界的计算结果表明: 在没有氧原子富集的情况下,多晶样品中晶界的磁性很弱,而在有氧原子富集的情况下,晶界磁性比较强. 因此可以推断多晶样品的磁性主要出现在多晶表面、晶粒包围孔隙、微裂纹界面、晶界和其他晶体缺陷等有氧原子富集的区域. 这种残余磁性可以通过热处理等结构优化过程而削弱甚至消除.
    MgO polycrystal is found to be weakly magnetic experimentally, although its single crystal is non magnetic. In this work, the magnetic properties of surfaces of crystal and nano-particles of MgO are studied by the first-principles density functional theory. The obtained results show that there are the oxygen-rich regions in all the magnetic surfaces discussed in this work, especially in the (111) surface with pure oxygen layer and the (114) surface with pure oxygen chains. Other surfaces with high Miller indices generally have the oxygen-rich regions. For MgO nano-particles, the facets with high Miller indices and the edges and vertexes formed by different orientation surfaces are oxygen-rich possibly and have strong magnetism. The itinerant magnetism is indentified for the magnetism on the surfaces of MgO crystal and the surfaces of MgO nano-particles. That the special MgO ∑ 7[111] grain boundary is not magnetic means that the magnetism of MgO grain boundary is weak if the chemical composition in grain-boundary region is slightly different from that in the crystal. It can be inferred that the magnetism of MgO polycrystal is mainly contributed by the polycrystal surface, the micro-pores, micro-voids and micro-cracks.
    • 基金项目: 国家重点基础研究发展计划(批准号:2012CB933702)、国家自然科学基金(批准号:11174284)和国家自然科学基金联合基金重点项目(批准号:U1230202)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB933702), the National Natural Science Foundation of China (Grant No. 11174284), and the Key Program of Joint Funds of the National Natural Science Foundation of China (Grant No. U1230202).
    [1]

    Sundaresan A, Rao C N R 2009 Nano Today 4 96

    [2]

    Rehman S, Mumtaz A, Hasanain S K 2011 J. Nanopart. Res. 13 2497

    [3]

    Venkatesan M, Fitzgerald C B, Coey J M D 2004 Nature 430 630

    [4]

    Sundaresan A, Rao C N R 2009 Solid State Commun. 149 1197

    [5]

    Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U, Rao C N R 2006 Phys. Rev. B 74 161306(R)

    [6]

    Hong N H, Sakai J, Poirot N, Brizé V 2006 Phys. Rev. B 73 132404

    [7]

    Khalid M, Setzer A, Ziese M, Esquinazi P, Spemann D, Pöppl A, Goering E 2010 Phys. Rev. B 81 214414

    [8]

    Martínez-Boubeta C, Beltrán J I, Balcells L L, Konstantinović Z, Valencia S, Schmitz D, Arbiol J, Estrade S, Cornil J, Martínez B 2010 Phys. Rev. B 82 024405

    [9]

    Maoz B M, Tirosh E, Sadan M B, Markovich G 2011 Phys. Rev. B 83 161201(R)

    [10]

    Osorio-Guillén J, Lany S, Barabash S V, Zunger A 2006 Phys. Rev. Lett. 96 107203

    [11]

    Pemmaraju C D, Sanvito S 2005 Phys. Rev. Lett. 94 217205

    [12]

    Baranek P, Pinarello G, Pisani C, Dovesi R 2000 Phys. Chem. Chem. Phys. 2 3893

    [13]

    Shipra, Gomathi A, Sundaresan A, Rao C N R 2007 Solid State Commun. 142 685

    [14]

    Hasanain S K, Akhtar N, Mumtaz A 2011 J. Nanopart. Res. 13 1953

    [15]

    Zhu Z H, Gao D Q, Dong C H, Yang G J, Zhang J, Zhang J L, Shi Z H, Gao H, Luo H G, Xue D S 2012 Phys. Chem. Phys. 14 3859

    [16]

    Baqiya M A, Widodo H, Rochmawati L, Darminito, Adachi T, Koike Y 2012 AIP Conf. Proc. 1454 260

    [17]

    Fan W, Zou L J, Zeng Z 2013 Physica C 492 80

    [18]

    Fan W, Zeng Z 2011 Physica C 471 1606

    [19]

    Yang P D, Lieber C M 1996 Science 273 1836

    [20]

    Fang X S, Ye C H, Xie T, Wang Z Y, Zhao J W, Zhang L D 2006 Appl. Phys. Lett. 88 013101

    [21]

    Chen L, Xu C, Zhang X F 2009 Acta Phys. Sin. 58 1603 [陈亮, 徐灿, 张小芳 2009 58 1603]

    [22]

    Chen H S, Chen H J 2011 Acta Phys. Sin. 60 073601 [陈宏善, 陈华君 2011 60 073601]

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [24]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Sutton A P, Balluffi R W 1995 Interface in Crystalline Materials (Oxford: Clarendon Press)

    [27]

    Balluffi R W 1982 Metall. Trans. B 13 527

    [28]

    Wang F G, Pang Z Y, Lin L, Fang S J, Dai Y, Han S H 2009 Phys. Rev. B 80 144424

    [29]

    Plass R, Egan K, Collazo-Davila C, Grozea D, Landree E, Marks L D, Gajdardziska-Josifovska M 1998 Phys. Rev. Lett. 81 4891

    [30]

    Gunnarsson O 1976 J. Phys. F: Metal. Phys. 6 587

    [31]

    Ge G X, Luo Y H 2008 Acta Phys. Sin. 57 4851 (in Chinese) [葛桂贤, 罗有华 2008 57 4851]

    [32]

    Zhang T, Fang Y Z, Dressel M, Wang X P, Fang Q F 2010 J. Appl. Phys. 108 113901

    [33]

    Han X F 2008 Physics 37 398 [韩秀峰 2008 物理 37 398]

    [34]

    Li Y B, Wei F L, Yang Z 2009 Physics 38 420 [李彦波, 魏福林, 杨正 2009 物理 38 420]

    [35]

    Iida K, Hänisch J, Trommler S, Haindl S, Kurth F, Hhne R, Schultz L, Holzapfel B 2011 Supercond. Sci. Technol. 24 125009

    [36]

    Momma K, Izumi F 2008 J. Appl. Crystallogr. 41 653

  • [1]

    Sundaresan A, Rao C N R 2009 Nano Today 4 96

    [2]

    Rehman S, Mumtaz A, Hasanain S K 2011 J. Nanopart. Res. 13 2497

    [3]

    Venkatesan M, Fitzgerald C B, Coey J M D 2004 Nature 430 630

    [4]

    Sundaresan A, Rao C N R 2009 Solid State Commun. 149 1197

    [5]

    Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U, Rao C N R 2006 Phys. Rev. B 74 161306(R)

    [6]

    Hong N H, Sakai J, Poirot N, Brizé V 2006 Phys. Rev. B 73 132404

    [7]

    Khalid M, Setzer A, Ziese M, Esquinazi P, Spemann D, Pöppl A, Goering E 2010 Phys. Rev. B 81 214414

    [8]

    Martínez-Boubeta C, Beltrán J I, Balcells L L, Konstantinović Z, Valencia S, Schmitz D, Arbiol J, Estrade S, Cornil J, Martínez B 2010 Phys. Rev. B 82 024405

    [9]

    Maoz B M, Tirosh E, Sadan M B, Markovich G 2011 Phys. Rev. B 83 161201(R)

    [10]

    Osorio-Guillén J, Lany S, Barabash S V, Zunger A 2006 Phys. Rev. Lett. 96 107203

    [11]

    Pemmaraju C D, Sanvito S 2005 Phys. Rev. Lett. 94 217205

    [12]

    Baranek P, Pinarello G, Pisani C, Dovesi R 2000 Phys. Chem. Chem. Phys. 2 3893

    [13]

    Shipra, Gomathi A, Sundaresan A, Rao C N R 2007 Solid State Commun. 142 685

    [14]

    Hasanain S K, Akhtar N, Mumtaz A 2011 J. Nanopart. Res. 13 1953

    [15]

    Zhu Z H, Gao D Q, Dong C H, Yang G J, Zhang J, Zhang J L, Shi Z H, Gao H, Luo H G, Xue D S 2012 Phys. Chem. Phys. 14 3859

    [16]

    Baqiya M A, Widodo H, Rochmawati L, Darminito, Adachi T, Koike Y 2012 AIP Conf. Proc. 1454 260

    [17]

    Fan W, Zou L J, Zeng Z 2013 Physica C 492 80

    [18]

    Fan W, Zeng Z 2011 Physica C 471 1606

    [19]

    Yang P D, Lieber C M 1996 Science 273 1836

    [20]

    Fang X S, Ye C H, Xie T, Wang Z Y, Zhao J W, Zhang L D 2006 Appl. Phys. Lett. 88 013101

    [21]

    Chen L, Xu C, Zhang X F 2009 Acta Phys. Sin. 58 1603 [陈亮, 徐灿, 张小芳 2009 58 1603]

    [22]

    Chen H S, Chen H J 2011 Acta Phys. Sin. 60 073601 [陈宏善, 陈华君 2011 60 073601]

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [24]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Sutton A P, Balluffi R W 1995 Interface in Crystalline Materials (Oxford: Clarendon Press)

    [27]

    Balluffi R W 1982 Metall. Trans. B 13 527

    [28]

    Wang F G, Pang Z Y, Lin L, Fang S J, Dai Y, Han S H 2009 Phys. Rev. B 80 144424

    [29]

    Plass R, Egan K, Collazo-Davila C, Grozea D, Landree E, Marks L D, Gajdardziska-Josifovska M 1998 Phys. Rev. Lett. 81 4891

    [30]

    Gunnarsson O 1976 J. Phys. F: Metal. Phys. 6 587

    [31]

    Ge G X, Luo Y H 2008 Acta Phys. Sin. 57 4851 (in Chinese) [葛桂贤, 罗有华 2008 57 4851]

    [32]

    Zhang T, Fang Y Z, Dressel M, Wang X P, Fang Q F 2010 J. Appl. Phys. 108 113901

    [33]

    Han X F 2008 Physics 37 398 [韩秀峰 2008 物理 37 398]

    [34]

    Li Y B, Wei F L, Yang Z 2009 Physics 38 420 [李彦波, 魏福林, 杨正 2009 物理 38 420]

    [35]

    Iida K, Hänisch J, Trommler S, Haindl S, Kurth F, Hhne R, Schultz L, Holzapfel B 2011 Supercond. Sci. Technol. 24 125009

    [36]

    Momma K, Izumi F 2008 J. Appl. Crystallogr. 41 653

  • [1] 刘旺旺, 张克学, 王军, 夏国栋. 过渡区内纳米颗粒的曳力特性模拟研究.  , 2024, 73(7): 075101. doi: 10.7498/aps.73.20231861
    [2] 马奥杰, 陈颂佳, 李玉秀, 陈颖. 纳米颗粒布朗扩散边界条件的分子动力学模拟.  , 2021, 70(14): 148201. doi: 10.7498/aps.70.20202240
    [3] 崔杰, 苏俊杰, 王军, 夏国栋, 李志刚. 自由分子区内纳米颗粒的热泳力计算.  , 2021, 70(5): 055101. doi: 10.7498/aps.70.20201629
    [4] 张旋, 张天赐, 葛际江, 蒋平, 张贵才. 表面活性剂对气-液界面纳米颗粒吸附规律的影响.  , 2020, 69(2): 026801. doi: 10.7498/aps.69.20190756
    [5] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率.  , 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [6] 黄小林, 侯丽珍, 喻博闻, 陈国良, 王世良, 马亮, 刘新利, 贺跃辉. Cu/C核/壳纳米结构的气相合成、形成机理及其光学性能研究.  , 2013, 62(10): 108102. doi: 10.7498/aps.62.108102
    [7] 刘东奇, 常彦春, 刘刚钦, 潘新宇. 金刚石纳米颗粒中氮空位色心的电子自旋研究.  , 2013, 62(16): 164208. doi: 10.7498/aps.62.164208
    [8] 罗毅, 赵国平, 杨海涛, 宋宁宁, 任肖, 丁浩峰, 成昭华. 单一晶相氧化锰纳米颗粒的交换偏置效应.  , 2013, 62(17): 176102. doi: 10.7498/aps.62.176102
    [9] 王新亮, 狄勤丰, 张任良, 丁伟朋, 龚玮, 程毅翀. 纳米颗粒吸附岩心表面的强疏水特征.  , 2012, 61(21): 216801. doi: 10.7498/aps.61.216801
    [10] 魏杰, 陈彦均, 徐卓. 多铁性BiFeO3纳米颗粒的尺寸依赖磁性能研究.  , 2012, 61(5): 057502. doi: 10.7498/aps.61.057502
    [11] 陈慧敏, 刘恩隆. 纳米颗粒与纳米块材摩尔定压热容的理论计算.  , 2011, 60(6): 066501. doi: 10.7498/aps.60.066501
    [12] 刘演华, 干富军, 张凯. 平面射流场中纳米颗粒的成核与凝并.  , 2010, 59(6): 4084-4092. doi: 10.7498/aps.59.4084
    [13] 林涛, 万能, 韩敏, 徐骏, 陈坤基. SnO2纳米晶体的制备、结构与发光性质.  , 2009, 58(8): 5821-5825. doi: 10.7498/aps.58.5821
    [14] 陈亮, 徐灿, 张小芳. 氧化镁纳米管团簇电子结构的密度泛函研究.  , 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [15] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟.  , 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [16] 刘锦宏, 张凌飞, 田庚方, 李济晨, 李发伸. 低温固相反应法制备的NiFe2O4纳米颗粒的结构与磁性.  , 2007, 56(10): 6050-6055. doi: 10.7498/aps.56.6050
    [17] 王 丽, 王海波, 王 涛, 李发伸. CoFe2O4纳米颗粒的结构、磁性以及离子迁移.  , 2006, 55(12): 6515-6521. doi: 10.7498/aps.55.6515
    [18] 赵新新, 陶向明, 陈文彬, 蔡建秋, 谭明秋. 3d过渡金属原子单层在Pd(001)表面磁性的第一性原理研究.  , 2005, 54(12): 5849-5854. doi: 10.7498/aps.54.5849
    [19] 闫小琴, 刘祖琴, 唐东升, 慈立杰, 刘东方, 周振平, 梁迎新, 袁华军, 周维亚, 王 刚. 衬底对化学气相沉积法制备氧化硅纳米线的影响.  , 2003, 52(2): 454-458. doi: 10.7498/aps.52.454
    [20] 汪雷, 唐景昌, 王学森. Si3N4/Si表面Si生长过程的扫描隧道显微镜研究.  , 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
计量
  • 文章访问数:  7660
  • PDF下载量:  820
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-21
  • 修回日期:  2013-11-08
  • 刊出日期:  2014-02-05

/

返回文章
返回
Baidu
map