-
A one-dimensional unsteady ignition and combustion model is established for the pulverized magnesium particles in a spherical cloud. The behavior of ignition and combustion of magnesium particle cloud is numerically simulated. The result shows that the ignition of particle cloud occurs at the boundary of particle cloud first, then the initial of which bifurcates into two flames, one of which propagates into the particle cloud, and the other moves away from it. Finally, the inner flame disappears because of O2 depletion, and only the outer flame, which maintains and controls the combustion of magnesium particle cloud, exists at the outside of it. The flame propagation velocity accelerates, while the flame temperature decreases during the process of the inner flame going into the magnesium particle cloud. The effects of the interior and the environmental parameters on the ignition and combustion of the magnesium particle cloud were analyzed. With the increase in the particle concentration, the ignition delay time increases slightly, but the propagation velocity of the inner flame becomes faster, and the steady particle cloud flame sphere is enlarging. With increasing initial temperature of the particle cloud, the ignition delay time canbe reduced significantly, the propagation of inner flame speeds up, but the size of steady particle cloud flame sphere keeps almost constant. The effect of ambient temperature on ignition and combustion of particle cloud is complicated. The higher the ambient temperature, the shorter the ignition delay time, however, the propagation velocity of inner flame becomes slower, and the size of the steady particle cloud flame sphere changes very insignificantly. Both the size of particle and the temperature of radiation source have great influences on the ignition and combustion of particle cloud. The smaller the particle size or the higher the temperature of radiation source, the shorter the ignition delay time of particle cloud, the faster the propagation velocity of inner flame, and the bigger the size of steady flame sphere. The results of numerical simulation are in good agreement with experimental data published in the literature.
[1] Shen H J, Xia Z X, Hu J X, Luo Z B 2007 J. Solid Rocket Technol 30 474 (in Chinese) [申慧君, 夏智勋, 胡建新, 罗振兵 2007 固体火箭技术 30 474]
[2] Krol D, Pekediz A, de Lasa H 2000 Powder Technol 108 6
[3] Bai D R, Jin Y 1991 J. Chemical Industry and Engineering (China) 42 697 (in Chinese) [白丁荣, 金涌 1991 化工学报 42 697]
[4] Liu M, Zhang H Q, Wang X L, Guo Y C, Lin W Y 2003 Journal of Combustion Science and Technology 9 128 (in Chinese) [刘敏, 张会强, 王希麟, 郭印诚, 林文漪 2003 燃烧科学与技术 9 128]
[5] Liu C R, Guo Y C, Wang X L 2006 J. Tsinghua Univ. (Sci. & Tech.) 46 728 (in Chinese) [刘春嵘, 郭印诚, 王希麟 2006 清华大学学报(自然科学版) 46 728]
[6] Shi H X, Luo Z Y, Wang Q H, Cen K F 2005 Chinese Journal of Power Engineering 25 60 [石惠娴, 骆仲泱, 王勤辉, 岑可法 2005 中国动力工程学报 25 60]
[7] Liu X Z, Yu S Z, Li C J 2007 the Power System of Cruise Missile (Vol. 2) (Beijing: China Astronautics Publishing House) p284 (in Chinese) [刘兴洲, 于守志, 李存杰 2007 飞航导弹动力装置 (下) (北京: 中国宇航出版社)第284页]
[8] Cen K F, Yao Q, Luo Z Y, Li X T 2002 Advanced Combustion Theory (Hangzhou: Zhejiang University Press) p329 (in Chinese) [岑可法, 姚强, 骆仲泱, 李绚天 2002 高等燃烧学 (杭州: 浙江大学出版社) 第329页]
[9] Chiu H H, Liu T M 1977 Combustion Science and Technology 17 127
[10] Chiu H H, Kim H Y, Croke E J 1982 Nineteenth Symposium (International) on Combustion/ The Combustion Institute Haifa, Israel, August 8-13, 1982 p971
[11] Chiu H H, Ahluwalia R K, Koh B, Croke E J 1978 AIAA 16th Aerospace Sciences meeting Huntsville, Alabama, January 16-18, 1978 p75
[12] Bellan J, Cuffel R 1983 Combustion and Flame 51 55
[13] Bellan J, Harstad K 1990 Combustion and Flame 79 272
[14] Annamalai K, Ramalingam S C 1987 Combustion and Flame 70 307
[15] Annamalai K, Ryan W 1992 Prog. Energy Combust. Sci. 18 221
[16] Annamalai K, Ryan W 1993 Prog. Energy Combust. Sci. 19 383
[17] Annamalai K, Ryan W 1994 Prog. Energy Combust. Sci. 20 487
[18] Brzustowski T A, Twardus E M, Wojcicki S, Sobiesiak A 1979 AIAA Iournal 17 1234
[19] Nagata H, Kudo I, Ken'ichi, Nakamura S, Takeshita Y 2002 Combust and Flame 129 392
[20] Daisuke S, Maki Y, Shinji N, Toshikazu K 2005 Microgravity Sci. Technol. XVII-3 23
[21] Daisuke S, Maki Y, Shinji N, Toshikazu K 2007 Proceedings of the Combustion Institute 31 2149
[22] Masato M, Hiroshi O, Naoya K, Masao K, Yuichiro W, Shinichi Y 2005 Combust. Flame 141 241
[23] Masato M, Hiroshi O, Naoya K, Yuichiro W, Masao K, Shinichi Y 2006 Combust. Flame 146 391
[24] Liu X J, Li L 2009 International Journal of Heat and Mass transfer 52 4785
[25] Du X Y, Gopalakrishnan C, Annamalai K 1995 Fuel 74 487
[26] Edward L D, Vern K H 1999 Combustion and Flame 118 262
[27] Edward L D, Vern K H 2000 Combustion and Flame 122 20
[28] Sun J H, Dobashi R, Hirano T 2006 Journal of Loss Prevention in the Process Industries 19 135
[29] Yin Y, Sun J H, Ding Y B, Guo S, He X C 2009 Journal of Hazardous Materials 170 340
[30] Zhao Y H, Kim H Y, Yoon S S 2007 Fuel 86 1102
[31] Yang J Z, Xia Z X, Hu J X 2012 Acta Phys. Sin. 61 164702 (in Chinese) [杨晋朝, 夏智勋, 胡建新 2012 61 164702]
[32] Ezhovskii G K, Ozerov E S 1978 Combustion, Explosion, and Shock Waves 13 716
[33] Breiter A L, Mal'tsev V M, Popov E I 1978 Combustion, Explosion and Shock Waves 13 475
[34] Fan J F, Yang G C, Zhou Y H, Xu J, Zhang Z F, Shi L K 2006 Foundry Technology 27 605 (in Chinese) [樊建锋, 杨根仓, 周尧和, 徐骏, 张志峰, 石力开 2006 铸造技术 27 605]
[35] Chen P, Zhang M X 2002 Special Casting & Nonferrous Alloys-2002 Year Die-Casting Special issue 323 (in Chinese) [陈萍, 张茂勋 2002 特种铸造及有色合金-2002年压铸专刊 323]
[36] Gurevich M A, Stepannov A M 1968 Fizika Goreniya i Vzryva 4 189
[37] Kashireninov O E, Manelis G B 1982 Russ. J. Phys. Chem 56 630
[38] Roberts T A, Burton R L, Krier H 1993 Combust. Flame 92 125
[39] Edward L D, Charles H B, Edward P V 2000 Combust. Flame 122 30
[40] Shoshin Y, Dreizin E 2003 Combust. Flame 133 275
-
[1] Shen H J, Xia Z X, Hu J X, Luo Z B 2007 J. Solid Rocket Technol 30 474 (in Chinese) [申慧君, 夏智勋, 胡建新, 罗振兵 2007 固体火箭技术 30 474]
[2] Krol D, Pekediz A, de Lasa H 2000 Powder Technol 108 6
[3] Bai D R, Jin Y 1991 J. Chemical Industry and Engineering (China) 42 697 (in Chinese) [白丁荣, 金涌 1991 化工学报 42 697]
[4] Liu M, Zhang H Q, Wang X L, Guo Y C, Lin W Y 2003 Journal of Combustion Science and Technology 9 128 (in Chinese) [刘敏, 张会强, 王希麟, 郭印诚, 林文漪 2003 燃烧科学与技术 9 128]
[5] Liu C R, Guo Y C, Wang X L 2006 J. Tsinghua Univ. (Sci. & Tech.) 46 728 (in Chinese) [刘春嵘, 郭印诚, 王希麟 2006 清华大学学报(自然科学版) 46 728]
[6] Shi H X, Luo Z Y, Wang Q H, Cen K F 2005 Chinese Journal of Power Engineering 25 60 [石惠娴, 骆仲泱, 王勤辉, 岑可法 2005 中国动力工程学报 25 60]
[7] Liu X Z, Yu S Z, Li C J 2007 the Power System of Cruise Missile (Vol. 2) (Beijing: China Astronautics Publishing House) p284 (in Chinese) [刘兴洲, 于守志, 李存杰 2007 飞航导弹动力装置 (下) (北京: 中国宇航出版社)第284页]
[8] Cen K F, Yao Q, Luo Z Y, Li X T 2002 Advanced Combustion Theory (Hangzhou: Zhejiang University Press) p329 (in Chinese) [岑可法, 姚强, 骆仲泱, 李绚天 2002 高等燃烧学 (杭州: 浙江大学出版社) 第329页]
[9] Chiu H H, Liu T M 1977 Combustion Science and Technology 17 127
[10] Chiu H H, Kim H Y, Croke E J 1982 Nineteenth Symposium (International) on Combustion/ The Combustion Institute Haifa, Israel, August 8-13, 1982 p971
[11] Chiu H H, Ahluwalia R K, Koh B, Croke E J 1978 AIAA 16th Aerospace Sciences meeting Huntsville, Alabama, January 16-18, 1978 p75
[12] Bellan J, Cuffel R 1983 Combustion and Flame 51 55
[13] Bellan J, Harstad K 1990 Combustion and Flame 79 272
[14] Annamalai K, Ramalingam S C 1987 Combustion and Flame 70 307
[15] Annamalai K, Ryan W 1992 Prog. Energy Combust. Sci. 18 221
[16] Annamalai K, Ryan W 1993 Prog. Energy Combust. Sci. 19 383
[17] Annamalai K, Ryan W 1994 Prog. Energy Combust. Sci. 20 487
[18] Brzustowski T A, Twardus E M, Wojcicki S, Sobiesiak A 1979 AIAA Iournal 17 1234
[19] Nagata H, Kudo I, Ken'ichi, Nakamura S, Takeshita Y 2002 Combust and Flame 129 392
[20] Daisuke S, Maki Y, Shinji N, Toshikazu K 2005 Microgravity Sci. Technol. XVII-3 23
[21] Daisuke S, Maki Y, Shinji N, Toshikazu K 2007 Proceedings of the Combustion Institute 31 2149
[22] Masato M, Hiroshi O, Naoya K, Masao K, Yuichiro W, Shinichi Y 2005 Combust. Flame 141 241
[23] Masato M, Hiroshi O, Naoya K, Yuichiro W, Masao K, Shinichi Y 2006 Combust. Flame 146 391
[24] Liu X J, Li L 2009 International Journal of Heat and Mass transfer 52 4785
[25] Du X Y, Gopalakrishnan C, Annamalai K 1995 Fuel 74 487
[26] Edward L D, Vern K H 1999 Combustion and Flame 118 262
[27] Edward L D, Vern K H 2000 Combustion and Flame 122 20
[28] Sun J H, Dobashi R, Hirano T 2006 Journal of Loss Prevention in the Process Industries 19 135
[29] Yin Y, Sun J H, Ding Y B, Guo S, He X C 2009 Journal of Hazardous Materials 170 340
[30] Zhao Y H, Kim H Y, Yoon S S 2007 Fuel 86 1102
[31] Yang J Z, Xia Z X, Hu J X 2012 Acta Phys. Sin. 61 164702 (in Chinese) [杨晋朝, 夏智勋, 胡建新 2012 61 164702]
[32] Ezhovskii G K, Ozerov E S 1978 Combustion, Explosion, and Shock Waves 13 716
[33] Breiter A L, Mal'tsev V M, Popov E I 1978 Combustion, Explosion and Shock Waves 13 475
[34] Fan J F, Yang G C, Zhou Y H, Xu J, Zhang Z F, Shi L K 2006 Foundry Technology 27 605 (in Chinese) [樊建锋, 杨根仓, 周尧和, 徐骏, 张志峰, 石力开 2006 铸造技术 27 605]
[35] Chen P, Zhang M X 2002 Special Casting & Nonferrous Alloys-2002 Year Die-Casting Special issue 323 (in Chinese) [陈萍, 张茂勋 2002 特种铸造及有色合金-2002年压铸专刊 323]
[36] Gurevich M A, Stepannov A M 1968 Fizika Goreniya i Vzryva 4 189
[37] Kashireninov O E, Manelis G B 1982 Russ. J. Phys. Chem 56 630
[38] Roberts T A, Burton R L, Krier H 1993 Combust. Flame 92 125
[39] Edward L D, Charles H B, Edward P V 2000 Combust. Flame 122 30
[40] Shoshin Y, Dreizin E 2003 Combust. Flame 133 275
Catalog
Metrics
- Abstract views: 6649
- PDF Downloads: 15791
- Cited By: 0