-
燃料在炸药爆炸驱动下形成燃料空气爆炸云团, 进而引燃爆炸, 对目标造成毁伤. 本文在前期提出的光滑离散颗粒流体动力学方法(SDPH)的基础上, 引入描述炸药由爆轰到膨胀整个过程的Jones-Wilkins-Lee状态方程及描述气体快速燃烧过程的EBU-Arrhenius燃烧模型, 建立了求解战斗部起爆、燃料抛撒和燃料二次引燃爆炸问题的新型SDPH方法. 设计了圆环形燃料颗粒在炸药爆炸驱动下运动抛撒的算例进行数值验证, 结果与理论相符; 对燃料空气炸药(FAE)云雾的形成和发展过程进行了数值模拟, 分析了云雾的形态, 并与实验结果进行对比, 符合较好, 同时分析了不同起爆方式对云雾团成型的影响; 最后, 在云雾团成型的基础上, 引入蒸发燃烧模型对FAE的燃烧爆炸过程进行了模拟研究. 结果表明, 本文建立的数学模型和计算方法可以较好的模拟燃料空气炸药抛撒成雾及云雾燃烧爆炸过程, 为该类武器装备的设计研究提供了较好的数值方法.
-
关键词:
- 燃料空气炸药 /
- 爆炸抛撒 /
- 燃烧 /
- 光滑离散颗粒流体动力学
A fuel air cloud is formed under the driving force of the explosive detonation and then it’s ignited to explosion to attack the target. The existing numerical simulations are mainly limited to the fuel dispersal processes which are all based on mesh methods. The fuel particles in the air cloud are difficult to traced. Otherwise, the computing process is complex and could not be solved by the exiting methods for the chemical reaction and the forming and propagation of shock waves are both involved in the fuel combustion and explosion. Smoothed discrete particle hydrodynamics (SDPH), as a new method to solve the gas-particle two-phase flow, has been successfully used to simulate the aeolian sand transport, heat transfer and evaporation. Based on the previous work, the Jones-Wilkins-Lee (JWL) function is imported to describe the explosive detonation to expansion and it is solved by finite volume method. The fuel drops dispersed by explosion are traced by the improved smoothed particle hydrodynamics. The drop evaporation model and the EBU-Arrhenius combustion model for gas high-speed combustion are introduced to describe the combustion and detonation of fuel drops. Then we build a new SDPH method to simulate the warhead initiation, fuel dispersal, and the fuel second explosion. Firstly, we design a test that is the dispersal of circular fuel drops drove by explosive detonation to validate our new method. The changing of the explosive detonation pressure and the velocity fields of explosive and particles are analyzed and they are consistent with the theory. And then, the forming and developing of FAE cloud are simulated. Through comparing with the experiments, the shapes of the cloud by the two methods coincide with each other. The effects of different initiations on the cloud forming are also analyzed. Finally, based on the cloud group forming, the evaporation and combustion models are introduced to study the combustion and explosion of FAE. We obtain the velocity field and the distribution of combustion product. The result indicates that the fuel dispersal into cloud and its explosion can be simulated better with the mathematical model and computational method built in this paper. This finding supplies a more effective numerical method for the design and research on this type of weapon equipments.-
Keywords:
- fuel air explosive /
- dispersal by explosion /
- combustion /
- smoothed discrete particle hydrodynamics
[1] Samirant M, Smeets G, Baras Ch 1989 Propell. Explos. Pyrot. 14 47
[2] Zhang Q, Qin B, Bai C H, Guo Y Y, Liu Q M, Liang H M 2007 Chinese J. Energ. Mater. 10 447 (in Chinese) [张奇, 覃彬, 白春华, 郭彦懿, 刘庆明, 梁慧敏 2007 含能材料 10 447]
[3] Gao H Q, Lu F Y, Wang S L, Luo Y F, Yuan Y N 2010 J. Ballistics 22 58 (in Chinese) [高洪泉, 卢芳云, 王少龙, 罗永锋, 袁亚楠 2010 弹道学报 22 58]
[4] Li X, Wang B L, Han Z, Wang X L 2013 Explos. Mater. 42 23 (in Chinese) [李席, 王伯良, 韩早, 王兴龙 2013 爆破器材 42 23]
[5] Guo X Y 2006 Ph. D. Dissertation (Nanjing:Nanjing University of Science and Technology) (in Chinese) [郭学永 2006 博士学位论文(南京:南京理工大学)]
[6] Jiang L, Bai C H, Liu Q M 2010 Explos. Shock Waves 30 588 (in Chinese) [蒋丽, 白春华, 刘庆明 2010 爆炸与冲击 30 588]
[7] Sauer F, Stubbs T 1977 AD-A047385
[8] Sedgwick R T, Krata H R 1976 AD-A159
[9] Hui J M, Liu R H, Peng J H, Tang M J 1996 Chinese J Energ. Mater. 4 123 (in Chinese) [惠君明, 刘荣海, 彭金华, 汤明钧 1996 含能材料 4 123]
[10] Zhang T, Hui J M, Xie L F, Guo X Y, Yu J 2004 Explos Shock Waves 24 176 (in Chinese) [张陶, 惠君明, 解立峰, 於津 2004 爆炸与冲击 24 176]
[11] Xiong Z Z, Bai C H, Zhang Q, Liu Q M 2001 Blasting 18 83 (in Chinese) [熊祖钊, 白春华, 张奇, 刘庆明 2001 爆破 18 83]
[12] Lin W, Zhou J, Fan X H, Lin Z Y 2015 Chin. Phys. B 24 014701
[13] Rosenblatt M 1976 AD-BO-17905
[14] Gardner D R 1979 SAND-90-0686
[15] Glass M W 1978 SAND90
[16] Ivandaev A I 1982 Fluid Dynam. 17 68
[17] Xi Z D, Xie L F, Liu J C, Li J F 2004 Explos. Shock Waves 24 240 (in Chinese) [席志德, 解立峰, 刘家骢, 李剑锋 2004 爆炸与冲击 24 240
[18] Xue S S, Liu J C, Zhu G S, Peng J H 1998 Explos. Shock Waves 18 296 (in Chinese) [薛社生, 刘家聪, 朱广圣, 彭金华 1998 爆炸与冲击 18 296]
[19] Jia F 2014 MS Thesis (Nanjing:Nanjing University of Science and Technology) (in Chinese) [贾飞 2014 硕士学位论文(南京:南京理工大学)]
[20] Chen J C, Zhang Q, Ma Q J, Huang Y, Liu X L, Shen S L, Li D 2014 Acta Armamentarii 35 972 (in Chinese) [陈嘉琛, 张奇, 马秋菊, 黄莹, 刘雪岭, 沈世磊, 李栋 2014 兵工学报 35 972]
[21] Shi Y T, Zhang Q 2014 Chinese J Energ. Mater. 22 353 (in Chinese) [史远通, 张奇 2014 含能材料 22 353]
[22] Chen F Z, Qiang H F, Gao W R 2014 Acta Phys. Sin. 63 130202 (in Chinese) [陈福振, 强洪夫, 高巍然 2014 63 130202]
[23] Chen F Z, Qiang H F, Gao W R 2014 Acta Phys. Sin. 63 230206 (in Chinese) [陈福振, 强洪夫, 高巍然 2014 63 230206]
[24] Dobratz B M 1981 Explosive Handbook (Livermore:Lawrence Livermore National Laboratory)
[25] Qiang H F, Wang K P, Gao W R 2008 T. TianJin Univ. 14 495
-
[1] Samirant M, Smeets G, Baras Ch 1989 Propell. Explos. Pyrot. 14 47
[2] Zhang Q, Qin B, Bai C H, Guo Y Y, Liu Q M, Liang H M 2007 Chinese J. Energ. Mater. 10 447 (in Chinese) [张奇, 覃彬, 白春华, 郭彦懿, 刘庆明, 梁慧敏 2007 含能材料 10 447]
[3] Gao H Q, Lu F Y, Wang S L, Luo Y F, Yuan Y N 2010 J. Ballistics 22 58 (in Chinese) [高洪泉, 卢芳云, 王少龙, 罗永锋, 袁亚楠 2010 弹道学报 22 58]
[4] Li X, Wang B L, Han Z, Wang X L 2013 Explos. Mater. 42 23 (in Chinese) [李席, 王伯良, 韩早, 王兴龙 2013 爆破器材 42 23]
[5] Guo X Y 2006 Ph. D. Dissertation (Nanjing:Nanjing University of Science and Technology) (in Chinese) [郭学永 2006 博士学位论文(南京:南京理工大学)]
[6] Jiang L, Bai C H, Liu Q M 2010 Explos. Shock Waves 30 588 (in Chinese) [蒋丽, 白春华, 刘庆明 2010 爆炸与冲击 30 588]
[7] Sauer F, Stubbs T 1977 AD-A047385
[8] Sedgwick R T, Krata H R 1976 AD-A159
[9] Hui J M, Liu R H, Peng J H, Tang M J 1996 Chinese J Energ. Mater. 4 123 (in Chinese) [惠君明, 刘荣海, 彭金华, 汤明钧 1996 含能材料 4 123]
[10] Zhang T, Hui J M, Xie L F, Guo X Y, Yu J 2004 Explos Shock Waves 24 176 (in Chinese) [张陶, 惠君明, 解立峰, 於津 2004 爆炸与冲击 24 176]
[11] Xiong Z Z, Bai C H, Zhang Q, Liu Q M 2001 Blasting 18 83 (in Chinese) [熊祖钊, 白春华, 张奇, 刘庆明 2001 爆破 18 83]
[12] Lin W, Zhou J, Fan X H, Lin Z Y 2015 Chin. Phys. B 24 014701
[13] Rosenblatt M 1976 AD-BO-17905
[14] Gardner D R 1979 SAND-90-0686
[15] Glass M W 1978 SAND90
[16] Ivandaev A I 1982 Fluid Dynam. 17 68
[17] Xi Z D, Xie L F, Liu J C, Li J F 2004 Explos. Shock Waves 24 240 (in Chinese) [席志德, 解立峰, 刘家骢, 李剑锋 2004 爆炸与冲击 24 240
[18] Xue S S, Liu J C, Zhu G S, Peng J H 1998 Explos. Shock Waves 18 296 (in Chinese) [薛社生, 刘家聪, 朱广圣, 彭金华 1998 爆炸与冲击 18 296]
[19] Jia F 2014 MS Thesis (Nanjing:Nanjing University of Science and Technology) (in Chinese) [贾飞 2014 硕士学位论文(南京:南京理工大学)]
[20] Chen J C, Zhang Q, Ma Q J, Huang Y, Liu X L, Shen S L, Li D 2014 Acta Armamentarii 35 972 (in Chinese) [陈嘉琛, 张奇, 马秋菊, 黄莹, 刘雪岭, 沈世磊, 李栋 2014 兵工学报 35 972]
[21] Shi Y T, Zhang Q 2014 Chinese J Energ. Mater. 22 353 (in Chinese) [史远通, 张奇 2014 含能材料 22 353]
[22] Chen F Z, Qiang H F, Gao W R 2014 Acta Phys. Sin. 63 130202 (in Chinese) [陈福振, 强洪夫, 高巍然 2014 63 130202]
[23] Chen F Z, Qiang H F, Gao W R 2014 Acta Phys. Sin. 63 230206 (in Chinese) [陈福振, 强洪夫, 高巍然 2014 63 230206]
[24] Dobratz B M 1981 Explosive Handbook (Livermore:Lawrence Livermore National Laboratory)
[25] Qiang H F, Wang K P, Gao W R 2008 T. TianJin Univ. 14 495
计量
- 文章访问数: 7265
- PDF下载量: 373
- 被引次数: 0