-
A one-dimensional unsteady magnesium particle cloud ignition model with finite influencing sphere is established. The behavior of ignition of magnesium particle cloud is numerically simulated. The result shows that when the reaction is speeded up on the surface of magnesium particle, the temperature of the particle phase rises rapidly up to ignition temperature, while the surrounding air is much slower in temperature rising than particles; the gas temperature rising is unconspicuous in the whole sphere in the ignition process, albeit it is significant near the particle surface. The effects of the interior parameters and the environmental parameters on the ignition of the magnesium particle cloud are analyzed. With the increase of particle concentration, the particle cloud becomes easier to be ignited, and reduction in its ignition time delay can be seen. However, when the particle concentration has increased to some specific extent and its further increase will be adverse to the ignition of the particle cloud. The influence of the environmental pressure on the ignition of particle cloud is insignificant, and the ignition performance of the particle cloud almost keeps constant in a range of 1-5 atm. The oxygen concentration in the gas phase also has a weak effect on the ignition performance of particle cloud, but when the oxygen concentration is very low, the effect will significantly increase. The particle size, the initial temperature of the gas/particle and the radiant source have all great influences on the ignition performance of the particle cloud. Small particle and high temperature are helpful for speeding up the ignition process. The tendency obtained by numerical simulation coincides well with that of the experimental results from the literature.
-
Keywords:
- powdered fuel ramjet /
- ignition of magnesium particle /
- particle cloud
[1] Shen H J, Xia Z X, Hu J X, Luo Z B 2007 J. Solid Rocket Technol. 30 474 (in Chinese) [申慧君, 夏智勋,胡建新,罗振兵 2007 固体火箭技术 30 474]
[2] Liu X Z, Yu S Z, Li C J 2007 The Power System of Cruise Missile (Vol. 2) (Beijing: China Astronautics Publishing House) p284 (in Chinese) [刘兴洲,于守志,李存杰 2007 飞航导弹动力装置(下) (北京:中国宇航出版社)第284页]
[3] Cen K F, Yao Q, Luo Z Y, Li X T 2002 Advanced Combustion Theory (Hangzhou: Zhejiang University Press) p329 (in Chinese) [岑可法, 姚强, 骆仲泱, 李绚天 2002 高等燃烧学 (杭州: 浙江大学出版社) 第329页]
[4] Annamalai K, Ryan W 1992 Prog. Energy Combust. Sci. 18 221
[5] Nagata H, Kudo I, Ken'ichi, Nakamura S, Takeshita Y 2002 Combust. Flame 129 392
[6] Brzustowski T A, Twardus E M, Wojcicki S, Sobiesiak A 1979 AIAA J. 17 1234
[7] Chiu H H, Kim H Y, Croke E J 1982 Nineteenth Symposium (International) on Combustion Haifa, Israel, August 8-13, 1982 p971
[8] Bellan J, Cuffel R 1983 Combust. Flame 51 55
[9] Zhang J, Zhang Z H 2004 Magnesium Alloy and Applications (Beijing: Chemical Industry Press) p8 (in Chinese) [张津, 章宗和 2004 镁合金及应用 (北京:化学工业出版社) 第8页]
[10] Ezhovskii G K, Ozerov E S 1978 Combust. Explo. Shock Waves 13 716
[11] Breiter A L, Mal'tsev V M, Popov E I 1978 Combustion. Explosio. Shock Waves 13 475
[12] Fan J F, Yang G C, Zhou Y H, Xu J, Zhang Z F, Shi L K 2006 Foundry Technol. 27 605 (in Chinese) [樊建锋, 杨根仓, 周尧和, 徐骏, 张志峰, 石力开 2006 铸造技术 27 605]
[13] Chen P, Zhang M X 2002 Special Casting and Nonferrous Alloys-2002 Year Die-Casting Special Issue 323 [陈萍, 张茂勋 2002 特种铸造及有色合金-2002年压铸专刊 323]
[14] Elkotb M M, Salama N, Nassef I 1996 Twenty-Sixth Symposium (International) on Combustion Napoli, Italy, July 28-August 2, 1996 p1937
[15] Annamalai K, Ryan W 1993 Prog. Energy Combust. Sci. 19 383
[16] Roberts T A, Burton R L, Krier H 1993 Combust. Flame 92 125
[17] Yang C H 2008 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)[杨成虎 2008 博士学位论文(杭州: 浙江大学)]
[18] Cassel H M, Liebman I 1959 Combust. Flame 3 467
-
[1] Shen H J, Xia Z X, Hu J X, Luo Z B 2007 J. Solid Rocket Technol. 30 474 (in Chinese) [申慧君, 夏智勋,胡建新,罗振兵 2007 固体火箭技术 30 474]
[2] Liu X Z, Yu S Z, Li C J 2007 The Power System of Cruise Missile (Vol. 2) (Beijing: China Astronautics Publishing House) p284 (in Chinese) [刘兴洲,于守志,李存杰 2007 飞航导弹动力装置(下) (北京:中国宇航出版社)第284页]
[3] Cen K F, Yao Q, Luo Z Y, Li X T 2002 Advanced Combustion Theory (Hangzhou: Zhejiang University Press) p329 (in Chinese) [岑可法, 姚强, 骆仲泱, 李绚天 2002 高等燃烧学 (杭州: 浙江大学出版社) 第329页]
[4] Annamalai K, Ryan W 1992 Prog. Energy Combust. Sci. 18 221
[5] Nagata H, Kudo I, Ken'ichi, Nakamura S, Takeshita Y 2002 Combust. Flame 129 392
[6] Brzustowski T A, Twardus E M, Wojcicki S, Sobiesiak A 1979 AIAA J. 17 1234
[7] Chiu H H, Kim H Y, Croke E J 1982 Nineteenth Symposium (International) on Combustion Haifa, Israel, August 8-13, 1982 p971
[8] Bellan J, Cuffel R 1983 Combust. Flame 51 55
[9] Zhang J, Zhang Z H 2004 Magnesium Alloy and Applications (Beijing: Chemical Industry Press) p8 (in Chinese) [张津, 章宗和 2004 镁合金及应用 (北京:化学工业出版社) 第8页]
[10] Ezhovskii G K, Ozerov E S 1978 Combust. Explo. Shock Waves 13 716
[11] Breiter A L, Mal'tsev V M, Popov E I 1978 Combustion. Explosio. Shock Waves 13 475
[12] Fan J F, Yang G C, Zhou Y H, Xu J, Zhang Z F, Shi L K 2006 Foundry Technol. 27 605 (in Chinese) [樊建锋, 杨根仓, 周尧和, 徐骏, 张志峰, 石力开 2006 铸造技术 27 605]
[13] Chen P, Zhang M X 2002 Special Casting and Nonferrous Alloys-2002 Year Die-Casting Special Issue 323 [陈萍, 张茂勋 2002 特种铸造及有色合金-2002年压铸专刊 323]
[14] Elkotb M M, Salama N, Nassef I 1996 Twenty-Sixth Symposium (International) on Combustion Napoli, Italy, July 28-August 2, 1996 p1937
[15] Annamalai K, Ryan W 1993 Prog. Energy Combust. Sci. 19 383
[16] Roberts T A, Burton R L, Krier H 1993 Combust. Flame 92 125
[17] Yang C H 2008 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)[杨成虎 2008 博士学位论文(杭州: 浙江大学)]
[18] Cassel H M, Liebman I 1959 Combust. Flame 3 467
Catalog
Metrics
- Abstract views: 6223
- PDF Downloads: 434
- Cited By: 0