-
Ultra-wideband (UWB) microwave imaging technology can be used as an effective method of detecting early breast cancer, which is based on the difference of the electrical characteristic between normal breast tissues and tumor. The method can provide both the sufficient resolution and the adequate penetration depth in the breast. In this paper, the finite difference time domain method is employed to simulate the microwave propagation in three-dimensional breast tissue. The single pole Debye model is used to approximate the real electrical properties of the breast organism. The antenna arrays made up of 8 emitters and 9 detectors are performed for the detection. The confocal imaging algorithm is employed for the reconstruction of the breast tissue and location. The tumor information displayed in the reconstructed breast image verifies the correctness of the confocal imaging algorithm and the effectiveness of the UWB microwave imaging technique applied to the early breast cancer detection.
-
Keywords:
- microwave imaging /
- breast cancer detection /
- finite difference time domain /
- confocal image method
[1] Xu X H, Li H 2008 Acta Phys. Sin. 57 4623 (in Chinese) [徐晓辉, 李 晖 2008 57 4623]
[2] Li X, Bond B D, Veen V, Hagness S C 2005 IEEE Antennas Propag. 47 19
[3] Liu G D, Zhang Y R 2011 Acta Phys. Sin. 60 4303 (in Chinese) [刘广东, 张业荣 2011 60 4303]
[4] Fear E C, Hagness S C, Meaney P M, Okoniewski M A, Stuchly M A 2002 IEEE Microw. Mag. 3 48
[5] Joines W T, Zhang Y, Li C, Jirtle R L 1994 Med. Phys. 21 547
[6] Xiao X, Kikkawa T 2008 Jpn. J. Appl. Phys. 47 3209
[7] Xiao X, Kikkawa T 2008 Appl. Surf. Sci. 255 597
[8] Winters D W, Bond E J, Hagness S C 2006 IEEE Trans. Antennas Propag. 54 3517
[9] Young J L 1995 IEEE Trans. Antennas Propag. 43 422
[10] Xu L, Xiao X, Wang L, Kikkawa T 2011 International Conference of Electron Devices and Solid-State Circuits (EDSSC) Tianjin, China, November 17-18, 2011 p1
[11] Berenger J P 1994 J. Comput. Phys. 114 185
[12] Berenger J P 1996 J. Comput. Phys. 127 363
[13] Gedney S D 1996 IEEE Trans. Antennas Propagat. 44 1630
[14] Liu X, Xiao X 2010 IEEE International Conference on Ultra-Wideband (ICUWB), Nanjing, September 20-23, 2010 p1
[15] Hooi B L, Nguyen T T N, Li E P 2008 IEEE Trans. Biomedical Eng. 55 1697
[16] Li X, Hagness S C 2001 IEEE Microw. Wirel. Co. 11 130
[17] Fear E C, Li X, Hagness S C, Stuchly M A 2002 IEEE Trans. Biomedical Eng. 49 812
-
[1] Xu X H, Li H 2008 Acta Phys. Sin. 57 4623 (in Chinese) [徐晓辉, 李 晖 2008 57 4623]
[2] Li X, Bond B D, Veen V, Hagness S C 2005 IEEE Antennas Propag. 47 19
[3] Liu G D, Zhang Y R 2011 Acta Phys. Sin. 60 4303 (in Chinese) [刘广东, 张业荣 2011 60 4303]
[4] Fear E C, Hagness S C, Meaney P M, Okoniewski M A, Stuchly M A 2002 IEEE Microw. Mag. 3 48
[5] Joines W T, Zhang Y, Li C, Jirtle R L 1994 Med. Phys. 21 547
[6] Xiao X, Kikkawa T 2008 Jpn. J. Appl. Phys. 47 3209
[7] Xiao X, Kikkawa T 2008 Appl. Surf. Sci. 255 597
[8] Winters D W, Bond E J, Hagness S C 2006 IEEE Trans. Antennas Propag. 54 3517
[9] Young J L 1995 IEEE Trans. Antennas Propag. 43 422
[10] Xu L, Xiao X, Wang L, Kikkawa T 2011 International Conference of Electron Devices and Solid-State Circuits (EDSSC) Tianjin, China, November 17-18, 2011 p1
[11] Berenger J P 1994 J. Comput. Phys. 114 185
[12] Berenger J P 1996 J. Comput. Phys. 127 363
[13] Gedney S D 1996 IEEE Trans. Antennas Propagat. 44 1630
[14] Liu X, Xiao X 2010 IEEE International Conference on Ultra-Wideband (ICUWB), Nanjing, September 20-23, 2010 p1
[15] Hooi B L, Nguyen T T N, Li E P 2008 IEEE Trans. Biomedical Eng. 55 1697
[16] Li X, Hagness S C 2001 IEEE Microw. Wirel. Co. 11 130
[17] Fear E C, Li X, Hagness S C, Stuchly M A 2002 IEEE Trans. Biomedical Eng. 49 812
Catalog
Metrics
- Abstract views: 8373
- PDF Downloads: 1476
- Cited By: 0