-
Based on the stretched coordinate perfectly matched layer (SC-PML) formulation and the auxiliary differential equation method, an absorbing boundary condition for general dispersive medium is presented, and applied to both the standard finite difference time domain (FDTD) method and the high-order FDTD method. The proposed D-H formulations are completely independent of the material properties of the FDTD computational domain. Thus they can be directly applied to the simulations involving arbitrary dielectrics. Numerical results show that compared with the CPML, the proposed method is versatile, has an improved absorbing performance and low computational complexity, and can substantially reduce the computational time.
-
Keywords:
- finite difference time domain /
- perfectly matched layer absorbing boundary condition /
- auxiliary differential equation /
- dispersive media
[1] Mur G 1981 IEEE Trans. Electromagn. Compat. 23 377
[2] Berenger J P 1994 J. Comput. Phys. 114 185
[3] Sacks Z S, Kingsland D M, Lee D M, Lee J F 1995 IEEE Trans. Antennas. Propagat. 43 1460
[4] Gedney S D 1996 IEEE Trans. Antennas. Propagat. 44 1630
[5] Chew W C, Weedon W H 1994 Micro. Opt. Tech. Lett. 13 599
[6] Roden J A, Gedney S D 2000 Micro. Opt. Tech. Lett. 27 334
[7] Luebbers R J, Hunsberger F, Kunz K S, Standler R B, Schneider M 1990 IEEE Trans. Electromagn. Compat. 32 222
[8] Kelley D F, Luebbers R J 1996 IEEE Trans. Antennas. Propagat. 44 792
[9] Liu S B, Mo J J, Yuan N C 2004 Acta Phys. Sin. 53 783 (in Chinese) [刘少斌, 莫锦军, 袁乃昌 2004 53 783]
[10] Xu L J, Liu S B, Mo J J, Yuan N C 2006 Acta Phys. Sin. 55 3470 (in Chinese) [徐利军, 刘少斌, 莫锦军, 袁乃昌 2006 55 3470]
[11] Liu S B, Mo J J,Yuan N C 2004 Acta Phys. Sin. 53 778 (in Chinese) [刘少斌, 莫锦军, 袁乃昌 2004 53 778]
[12] Liu S B, Zhu C X, Yuan N C 2005 Acta Phys. Sin. 54 2804 (in Chinese) [刘少斌, 朱传喜, 袁乃昌 2005 54 2804]
[13] Young J L 1995 IEEE Trans. Antennas. Propagat. 43 422
[14] Joseph R M, Hagness S C, Taflove A 1991 Opt. Lett. 16 1412
[15] Sullivan D M 1992 IEEE Trans. Antennas. Propagat. 40 1223
[16] Wei B, Li X Y, Wang F, Ge D B 2009 Acta Phys. Sin. 58 6174 (in Chinese) [魏兵, 李小勇, 王飞, 葛德彪 2009 58 6174]
[17] Kuzuoglu M, Mittra R 1996 IEEE Microwave Guided Wave Lett. 6 447
[18] Fujii M, Tahara M, Sakagami I, Freude W, Russer P 2004 IEEE J. Quantum. Elect. 40 175
[19] Fujii M, Tahara M, Sakagami I, Poulton C, Freude W, Russer P 2005 IEEE J. Quantum. Elect. 41 448
-
[1] Mur G 1981 IEEE Trans. Electromagn. Compat. 23 377
[2] Berenger J P 1994 J. Comput. Phys. 114 185
[3] Sacks Z S, Kingsland D M, Lee D M, Lee J F 1995 IEEE Trans. Antennas. Propagat. 43 1460
[4] Gedney S D 1996 IEEE Trans. Antennas. Propagat. 44 1630
[5] Chew W C, Weedon W H 1994 Micro. Opt. Tech. Lett. 13 599
[6] Roden J A, Gedney S D 2000 Micro. Opt. Tech. Lett. 27 334
[7] Luebbers R J, Hunsberger F, Kunz K S, Standler R B, Schneider M 1990 IEEE Trans. Electromagn. Compat. 32 222
[8] Kelley D F, Luebbers R J 1996 IEEE Trans. Antennas. Propagat. 44 792
[9] Liu S B, Mo J J, Yuan N C 2004 Acta Phys. Sin. 53 783 (in Chinese) [刘少斌, 莫锦军, 袁乃昌 2004 53 783]
[10] Xu L J, Liu S B, Mo J J, Yuan N C 2006 Acta Phys. Sin. 55 3470 (in Chinese) [徐利军, 刘少斌, 莫锦军, 袁乃昌 2006 55 3470]
[11] Liu S B, Mo J J,Yuan N C 2004 Acta Phys. Sin. 53 778 (in Chinese) [刘少斌, 莫锦军, 袁乃昌 2004 53 778]
[12] Liu S B, Zhu C X, Yuan N C 2005 Acta Phys. Sin. 54 2804 (in Chinese) [刘少斌, 朱传喜, 袁乃昌 2005 54 2804]
[13] Young J L 1995 IEEE Trans. Antennas. Propagat. 43 422
[14] Joseph R M, Hagness S C, Taflove A 1991 Opt. Lett. 16 1412
[15] Sullivan D M 1992 IEEE Trans. Antennas. Propagat. 40 1223
[16] Wei B, Li X Y, Wang F, Ge D B 2009 Acta Phys. Sin. 58 6174 (in Chinese) [魏兵, 李小勇, 王飞, 葛德彪 2009 58 6174]
[17] Kuzuoglu M, Mittra R 1996 IEEE Microwave Guided Wave Lett. 6 447
[18] Fujii M, Tahara M, Sakagami I, Freude W, Russer P 2004 IEEE J. Quantum. Elect. 40 175
[19] Fujii M, Tahara M, Sakagami I, Poulton C, Freude W, Russer P 2005 IEEE J. Quantum. Elect. 41 448
Catalog
Metrics
- Abstract views: 7884
- PDF Downloads: 1144
- Cited By: 0