-
本文采用第一性原理的密度泛函理论,主要以(6,6)Armchair型,(11,0)Zigzag型单壁碳纳米管为研究对象,研究了水分子链在碳纳米管内部吸附的稳定结构,以及结合能随其结构的变化.结果表明:当水分子链受限于碳纳米管内部时,引起碳纳米管直径收缩,这主要是由于水分子链与碳纳米管之间的氢键作用以及范德华弱相互作用所引起的.随着碳纳米管半径的增加,两种单体之间的结合能逐渐减小,但当碳纳米管半径增加至6.78时,其结合能又有所增加,这是由于在优化过程中,水分子链单体之间的氢键作用大于水分子链与碳纳米管之
-
关键词:
- 水分子链/单壁碳纳米管 /
- 密度泛函理论 /
- 结构稳定性
The structure of water molecules encapsulated in single-walled carbon nanotubes (SWCNTs) was studied using a self-consistent charge density functional tight binding method with dispersion correction. The most interesting and important feature observed is the diameter shrinkage of SWCNTs when water chains are confined inside them. The diameter shrinking of SWCNTs may be due to the van der Waals and H-π interaction between water chains and SWCNTs. The binding energy decreases with the increase of the nanotube radius. But when the radius is increased to 6.78 ?, the binding energy is a little increased, and the water chain has changed as a "book-like" structure, which suggests that the weak hydrogen bonding in the isolated water chains is larger than the interaction between water chains and the SWCNTs.-
Keywords:
- water chain/single-walled carbon nanotubes /
- density functional theory /
- structure stability
[1] Iijima S 1991 Nature 354 56
[2] Liew K M, Wong C H, He X Q, Tan M J, Meguid S A 2004 Phys. Rev. B 69 115429
[3] Huang J Y, Chen S, Wang Z Q, Kempa K, Wang Y M, Jo S H, Chen G, Dresselhaus M S, Ren Z F 2006 Nature 439 281
[4] Huang B, Xia Y, Zhao M, Li F, Liu X, Ji Y, Song C 2005 J.Chem. Phys. 122 084708
[5] Tsang S C, Chen Y K, Harris P J F, Green M L H 1994 Nature 372 159
[6] Zhang X Q, Li H, Liew K M 2007 J. Appl. Phys. 102 073709
[7] Zhang K W, Meng L J, Li J, Liu W L, Tang Y, Zhong X J 2008 Acta Phys. Sin. 57 4347 (in Chinese) [张凯旺、孟利军、李 俊、刘文亮、唐 翌、钟建新 2008 57 4347]
[8] Li H, Zhang X Q, Sun F W, Li Y F, Liew K M, He X Q 2007 J. Appl. Phys. 102 013702
[9] Ajayan P M, Stephan O, Redlich P, Colliex C 1995 Nature 375 564
[10] Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188
[11] Levinger N E 2002 Science 298 1722
[12] Werder T, Walther J H, Jaffe R L, Halicioglu T, Koumoutsakos P 2003 J. Phys. Chem. B 107 1345
[13] Werder T, Walther J H, Jaffe R L, Halicioglu T, Koumoutsakos P 2008 J. Phys. Chem. B 112 14090
[14] Chen G D, Wang L D, An B, Yang M, Cao D C, Liu G Q 2009 Acta Phys. Sin. 58 1190 (in Chinese) [陈国栋、王六定、安 博、杨 敏、曹得财、刘光清 2009 58 1190]
[15] Mann D J, Halls M D 2003 Phys. Rev. Lett. 90 195503
[16] Li H, Zhang X Q, Liew K M 2008 J. Chem. Phys. 128 034707
[17] Rossi M P, Ye H, Gogotsi Y, Babu S, Ndungu P, Bradley J C 2004 Nano Letters 4 989
[18] Guo D Z, Zhang G M, Zhang Z X, Xue Z Q, Gu Z N 2006 J. Phys. Chem. B 110 1571
[19] Zhao Y, Song L, Deng K, Liu Z, Zhang Z, Yang Y, Wang C, Yang H, Jin A, Luo Q, Gu C, Xie S, Sun L 2008 Adv. Mater. 20 1772
[20] Yuan Q, Zhao Y P 2009 J. Am. Chem. Soc. 131 6374
[21] Agrawal B K, Singh V, Pathak A, Srivastava R 2007 Phys. Rev. B (Condensed Matter and Materials Physics) 75 195421
[22] Yuan Q, Zhao Y P 2009 Biomicrofluidics 3 022411
[23] Joseph J. W. McDouall K P a M A R 1988 Chem. Phys. Lett. 148 7
[24] Liu T, Huang M B 2007 Mol. Phys.: An International Journal at the Interface Between Chemistry and Physics 105 2279
[25] Hourahine B, Frauenheim T 2007 J. Phys. Chem. A 111 5678
[26] Feng C, Zhang R Q, Dong S L, Niehaus T A, Frauenheim T 2007 J. Phys. Chem. C 111 14131
[27] Lin C S, Zhang R Q, Lee S T, Elstner M, Frauenheim T, Wan L J 2005 J. Phys. Chem. B 109 14183
[28] Elstner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E 2001 J. Chem. Phys. 114 5149
[29] Koga K, Gao G T, Tanaka H, Zeng X C 2001 Nature 412 802
-
[1] Iijima S 1991 Nature 354 56
[2] Liew K M, Wong C H, He X Q, Tan M J, Meguid S A 2004 Phys. Rev. B 69 115429
[3] Huang J Y, Chen S, Wang Z Q, Kempa K, Wang Y M, Jo S H, Chen G, Dresselhaus M S, Ren Z F 2006 Nature 439 281
[4] Huang B, Xia Y, Zhao M, Li F, Liu X, Ji Y, Song C 2005 J.Chem. Phys. 122 084708
[5] Tsang S C, Chen Y K, Harris P J F, Green M L H 1994 Nature 372 159
[6] Zhang X Q, Li H, Liew K M 2007 J. Appl. Phys. 102 073709
[7] Zhang K W, Meng L J, Li J, Liu W L, Tang Y, Zhong X J 2008 Acta Phys. Sin. 57 4347 (in Chinese) [张凯旺、孟利军、李 俊、刘文亮、唐 翌、钟建新 2008 57 4347]
[8] Li H, Zhang X Q, Sun F W, Li Y F, Liew K M, He X Q 2007 J. Appl. Phys. 102 013702
[9] Ajayan P M, Stephan O, Redlich P, Colliex C 1995 Nature 375 564
[10] Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188
[11] Levinger N E 2002 Science 298 1722
[12] Werder T, Walther J H, Jaffe R L, Halicioglu T, Koumoutsakos P 2003 J. Phys. Chem. B 107 1345
[13] Werder T, Walther J H, Jaffe R L, Halicioglu T, Koumoutsakos P 2008 J. Phys. Chem. B 112 14090
[14] Chen G D, Wang L D, An B, Yang M, Cao D C, Liu G Q 2009 Acta Phys. Sin. 58 1190 (in Chinese) [陈国栋、王六定、安 博、杨 敏、曹得财、刘光清 2009 58 1190]
[15] Mann D J, Halls M D 2003 Phys. Rev. Lett. 90 195503
[16] Li H, Zhang X Q, Liew K M 2008 J. Chem. Phys. 128 034707
[17] Rossi M P, Ye H, Gogotsi Y, Babu S, Ndungu P, Bradley J C 2004 Nano Letters 4 989
[18] Guo D Z, Zhang G M, Zhang Z X, Xue Z Q, Gu Z N 2006 J. Phys. Chem. B 110 1571
[19] Zhao Y, Song L, Deng K, Liu Z, Zhang Z, Yang Y, Wang C, Yang H, Jin A, Luo Q, Gu C, Xie S, Sun L 2008 Adv. Mater. 20 1772
[20] Yuan Q, Zhao Y P 2009 J. Am. Chem. Soc. 131 6374
[21] Agrawal B K, Singh V, Pathak A, Srivastava R 2007 Phys. Rev. B (Condensed Matter and Materials Physics) 75 195421
[22] Yuan Q, Zhao Y P 2009 Biomicrofluidics 3 022411
[23] Joseph J. W. McDouall K P a M A R 1988 Chem. Phys. Lett. 148 7
[24] Liu T, Huang M B 2007 Mol. Phys.: An International Journal at the Interface Between Chemistry and Physics 105 2279
[25] Hourahine B, Frauenheim T 2007 J. Phys. Chem. A 111 5678
[26] Feng C, Zhang R Q, Dong S L, Niehaus T A, Frauenheim T 2007 J. Phys. Chem. C 111 14131
[27] Lin C S, Zhang R Q, Lee S T, Elstner M, Frauenheim T, Wan L J 2005 J. Phys. Chem. B 109 14183
[28] Elstner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E 2001 J. Chem. Phys. 114 5149
[29] Koga K, Gao G T, Tanaka H, Zeng X C 2001 Nature 412 802
计量
- 文章访问数: 8718
- PDF下载量: 907
- 被引次数: 0