-
采用密度泛函理论中广义梯度近似对非典型富勒烯C22和过渡金属内掺衍生物M@C22(M=Sc,Ti,V,Cr,Mn,Fe,Co和Ni)的几何结构和电子结构进行计算研究.发现非典型富勒烯C22的基态结构是含有一个四碳环的单重态笼状结构.过渡金属原子的掺入明显提高了体系的稳定性. C-M键既有一定共价性又有一定离子性.磁性、能级图、轨道分布和态密度图分析表明:M原子的3d轨道和碳笼的C原子的原子轨道之间存在较强的轨道杂化. Ti, Cr, Fe和Ni内掺的结构出现磁性完全猝灭现象. Sc和碳笼间是弱反铁磁作用, V,Mn和Co与碳笼间是弱铁磁作用.
-
关键词:
- 富勒烯C22和M@C22 /
- 几何结构 /
- 电子结构 /
- 密度泛函理论
The generalized gradient approximation (GGA) based on density functional theory(DFT) is used to analyze the structural and electronic properties of the unclassical endohedral fullerene M@C22(M=Sc, Ti, V, Cr, Mn, Fe, Co and Ni). It is found that the ground-state structure of the unclassical fullerene C22 is a spin singlet cage containing one four-membered ring and the doping of transition metal atom can obviously enhance the stability. It is discovered that the C-M bond have both the covalent and the ionic characteristics. The analyses of magnetism, energy levels, orbital wave functions and density of states show the hybridization between the 3d orbital ofM atom and the C atomic orbital in C22. In addition, Ti, Cr, Fe and Ni atoms become non-magnetic after they have been doped into the C22.-
Keywords:
- C22,M@C22,fullerene /
- geometric structure /
- electronic structure /
- density functional theory
[1] Enyashin A N, Ivanovskaya V V, Makurin Yu N, Ivanovski A L 2004 Phys. Solid State 46 1522
[2] Jia H S, Wang L P, Han P D, Liu X G, Xu B S 2006 Chemical Journal of Chinese Universities 27 1958
[3] Guo T, Smalley R E, Scuseria G E 1993 J. Chem. Phys. 99 352
[4] Sun Z C, Li X J, Tian M S, Zhao G J, Li J C, Ma B 2009 J. Mol. Struct.(THEOCHEM) 913 265
[5] Yue Y, Li X J 2011 Int.J.Quantum Chem. 111 96
[6] Wu J L, Sun Z S, Li X J, Chen L, Tian M S 2010 Struct. Chem. 21 673
[7] Rubén E E, Ariel A V 2008 J. Mol. Struct.(THEOCHEM) 869 1
[8] Tan C L, Cai W, Tian X H 2006 Chin. Phys. 15 2718
[9] San D 1996 Dmol. Biosym. Technologies CA
[10] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[11] Fletcher R 1980 Practical Methods of Optimization (New York: Wiley) Vol 1
[12] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133
[13] Killblane C, Gao Y, Shao N, Zeng X C 2009 J. Phys. Chem. A 113 8839
[14] Lu G L, Yuan Y B, Deng K M, Wu H P, Yang J L, Wang X 2006 Chem. Phys. Lett. 424 142
[15] Kumar V, Kawazoe Y 2003 Appl. Phys. Lett. 13 2677
[16] Hossain M Z, Kato H S, Kawai M 2005 J. Am. Chem. Soc. 127 15030
[17] Aihara, J I 2001 Chem. Phys. Lett. 343 465
-
[1] Enyashin A N, Ivanovskaya V V, Makurin Yu N, Ivanovski A L 2004 Phys. Solid State 46 1522
[2] Jia H S, Wang L P, Han P D, Liu X G, Xu B S 2006 Chemical Journal of Chinese Universities 27 1958
[3] Guo T, Smalley R E, Scuseria G E 1993 J. Chem. Phys. 99 352
[4] Sun Z C, Li X J, Tian M S, Zhao G J, Li J C, Ma B 2009 J. Mol. Struct.(THEOCHEM) 913 265
[5] Yue Y, Li X J 2011 Int.J.Quantum Chem. 111 96
[6] Wu J L, Sun Z S, Li X J, Chen L, Tian M S 2010 Struct. Chem. 21 673
[7] Rubén E E, Ariel A V 2008 J. Mol. Struct.(THEOCHEM) 869 1
[8] Tan C L, Cai W, Tian X H 2006 Chin. Phys. 15 2718
[9] San D 1996 Dmol. Biosym. Technologies CA
[10] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[11] Fletcher R 1980 Practical Methods of Optimization (New York: Wiley) Vol 1
[12] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133
[13] Killblane C, Gao Y, Shao N, Zeng X C 2009 J. Phys. Chem. A 113 8839
[14] Lu G L, Yuan Y B, Deng K M, Wu H P, Yang J L, Wang X 2006 Chem. Phys. Lett. 424 142
[15] Kumar V, Kawazoe Y 2003 Appl. Phys. Lett. 13 2677
[16] Hossain M Z, Kato H S, Kawai M 2005 J. Am. Chem. Soc. 127 15030
[17] Aihara, J I 2001 Chem. Phys. Lett. 343 465
计量
- 文章访问数: 7967
- PDF下载量: 419
- 被引次数: 0