-
Some periodic interference fringes due to medium with inclined angle are found in the echo image when the medium plate is inclined in the penetrating experiment. These interference fringes have serious influence on the imaging result of the interesting target. The study indicates that the interference fringes are caused by the reflected waves, which mainly come from the surface and below layer of the medium plate. To analyze the interference fringe phenomenon, a point source model is constructed in the paper, and the expression of the spacing between the adjacent interference fringes is derived. When the factor about antenna is taken into account, the pyramid horn near-field model is constructed. Based on it, the accurate electromagnetic simulations are performed. The results of the commercial software CST and MATLAB calculation both confirm the analysis about the interference fringes and the relation with the inclined angle of the medium plate. From the expression of the thin medium, the spacing between the adjacent interference fringes is related to incline degree of the medium. Controlling the influence factors of the spacing between fringes can restrain the interference fringe phenomenon in order to improve the target resolving power and imaging quality.
-
Keywords:
- interference fringes /
- continuous wave /
- inclined angle
[1] David M S, Douglas L M, Thomas E H 2007 Proc. SPIE 6548 654809
[2] Ivashov S, Razevig V, Sheyko A, Vasilyev I, Zhuravlev A, Bechtel T 2008 12th International Conference on Ground Penetrating Radar Birmingham, UK, June 16-19, 2008 p185
[3] Koleikin V V, Popov A V 2000 Radiophys. Quantum El. 43 202
[4] Li Y, Gong H, Feng D, Zhang Y 2011 IEEE T. Geosci. Remote. 49 3105
[5] Zhang W G, Zhang Q, Yang C S 2011 Electron. Lett. 47 286
[6] Salim C, Amrane H, Boualem S 2002 Signal Process. 82 69
[7] Joenathan C, Torroba R, Henao R 2001 Optics. 112 163
[8] Cheng C F, Ren X R, Liu C X, Zhang N Y, Teng S Y, Xu Z Z 2004 Chin. Phys. Lett. 21 1057
[9] Wang L W, Wu J, Jiang J S 1996 Electron. Lett. 27 47 (in Chinese) [王丽巍, 吴季, 姜景山 1996 电子学报 27 47]
[10] Wang X G, Zhao D M 2012 Appl. Optics 51 686
[11] Wang L H 1975 Acta Phys. Sin. 24 317 (in Chinese) [魏乐汉 1975 24 317]
[12] Kozhevatov I E, Silin D E 2009 Radiophys. Quantum El. 52 67
[13] Alvin M 1978 Appl. Optics 17 2779
[14] Said M M, Yahia M M A 2011 IEEE T. Antenn. Propag. 59 4691
[15] Said M M, Yahia M M A 2011 IEEE T. Antenn. Propag. 59 4706
[16] Monzon J C 1993 IEEE T. Microw. Theory 41 1995
[17] Chen K M 1989 IEEE T. Microw. Theory 37 1576
[18] Pasquale I, Antonio I, Daniele R 2009 IEEE T. Antenn. Propag. 57 1481
-
[1] David M S, Douglas L M, Thomas E H 2007 Proc. SPIE 6548 654809
[2] Ivashov S, Razevig V, Sheyko A, Vasilyev I, Zhuravlev A, Bechtel T 2008 12th International Conference on Ground Penetrating Radar Birmingham, UK, June 16-19, 2008 p185
[3] Koleikin V V, Popov A V 2000 Radiophys. Quantum El. 43 202
[4] Li Y, Gong H, Feng D, Zhang Y 2011 IEEE T. Geosci. Remote. 49 3105
[5] Zhang W G, Zhang Q, Yang C S 2011 Electron. Lett. 47 286
[6] Salim C, Amrane H, Boualem S 2002 Signal Process. 82 69
[7] Joenathan C, Torroba R, Henao R 2001 Optics. 112 163
[8] Cheng C F, Ren X R, Liu C X, Zhang N Y, Teng S Y, Xu Z Z 2004 Chin. Phys. Lett. 21 1057
[9] Wang L W, Wu J, Jiang J S 1996 Electron. Lett. 27 47 (in Chinese) [王丽巍, 吴季, 姜景山 1996 电子学报 27 47]
[10] Wang X G, Zhao D M 2012 Appl. Optics 51 686
[11] Wang L H 1975 Acta Phys. Sin. 24 317 (in Chinese) [魏乐汉 1975 24 317]
[12] Kozhevatov I E, Silin D E 2009 Radiophys. Quantum El. 52 67
[13] Alvin M 1978 Appl. Optics 17 2779
[14] Said M M, Yahia M M A 2011 IEEE T. Antenn. Propag. 59 4691
[15] Said M M, Yahia M M A 2011 IEEE T. Antenn. Propag. 59 4706
[16] Monzon J C 1993 IEEE T. Microw. Theory 41 1995
[17] Chen K M 1989 IEEE T. Microw. Theory 37 1576
[18] Pasquale I, Antonio I, Daniele R 2009 IEEE T. Antenn. Propag. 57 1481
Catalog
Metrics
- Abstract views: 6688
- PDF Downloads: 441
- Cited By: 0