搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

30 keV He2+在不同倾斜角度的聚碳酸酯微孔膜中的传输过程

牛书通 周旺 潘鹏 朱炳辉 宋涵宇 邵剑雄 陈熙萌

引用本文:
Citation:

30 keV He2+在不同倾斜角度的聚碳酸酯微孔膜中的传输过程

牛书通, 周旺, 潘鹏, 朱炳辉, 宋涵宇, 邵剑雄, 陈熙萌

Transmission of 30-keV He2+ ions through polycarbonate nanocapillaries: Dependence on the incident angle

Niu Shu-Tong, Zhou Wang, Pan Peng, Zhu Bing-Hui, Song Han-Yu, Shao Jian-Xiong, Chen Xi-Meng
PDF
导出引用
  • 本文测量了30 keV的He2+入射倾斜角度分别为-0.5°,-1°,-1.5°和 -2.5°的聚碳酸酯纳米微孔膜后,出射粒子角度分布、电荷态分布以及相对穿透率随时间的演化.当微孔膜倾斜角度在-0.5°,-1°和-1.5°时,出射的He2+离子始终保持在入射束流方向,出射的He0原子出射方向由微孔孔道方向逐渐转移到入射束流方向,在实验过程中观测到明显的电荷交换,这一现象与之前发现的导向效应不同,微孔内部沉积的电荷斑和微孔内表面原子的短程集体散射作用,克服入射离子的横向动量,使入射离子在微孔内表面以上以类似镜面掠射的方式出射,并发生时间演化效应,主要传输机制为电荷斑辅助的表面以上的类似镜面掠射行为.而当倾斜角度在-2.5°时,出射的He2+离子始终保持在入射束流方向,出射的He0原子始终保持在微孔孔道方向,沉积的电荷斑很难克服入射离子的横向动量,没有时间演化效应,主要传输机制为微孔内表面以下的多次随机非弹性碰撞过程.这一物理图像使中能离子入射不同倾斜角度的微孔膜物理认识更加深入和完整.
    Nanocapillaries in various materials have received considerable attention due to the rapid growth of the nanotechnology.Recent studies have focused on the transmission of ions through the nanocapillary.The pioneer work,the transmission of 3-keV Ne7+ through polyethylene terephthalate nanocapillaries based on guiding effect has been reported by Stolterfoht et al.(2002 Phys.Rev.Lett.88 133201),indicating that the selforganized charge patches on the capillary walls,which inhibits close contact between the ions and the inner capillary walls,deflecting the trajectories of ions,and thus the ions transmit along the direction of the capillary axis.For the high-energy region (E/Q > 1 MV),Hasegawa et al.(2011 J.Appl.Phys.110 044913) measured the outgoing angle and energy distribution of 2 MeV H+ ions transmitted through a tapered glass capillary.The results indicated that the main transport mechanism of the MeV ions in a tapered glass capillary is the multiple random inelastic collisions below the surface.In the medium-energy region (E/Q from dozens of kV to hundreds of kV),Zhou et al.(2016 Acta Phys.Sin.65 103401) measured the transmission features of the 100-keV protons transmitted through a polycarbonate (PC) membrane at a tilt angle of+1°,the transmitted particles were located around the direction along the incident beam,not along the capillary axis,the transport mechanism of the 100-keV protons in the nanocapillary is the charge-patch-assisted collective scatterings on the surface.With the nanocapillary membranes at different tilt angles,the transverse momentum of the incident ions are different.What is the transmission mechanism of the ions in nanocapillary membranes at different tilt angels? In the present study,we measure the time evolution of the angular distribution,charge state distribution and relatively transmission rate of 30-keV He2+ ions with 500 pA transmitting through a polycarbonate nanocapillary membrane at different incident angles (-0.5°,-1°,-1.5°,-2.5°).It is found that for the small tilt angles (-0.5°,-1°,-1.5°) the transmitted He2+ ions are located around the direction of incident beam,not along the capillary axis,and the directions of the transmitted H0 atoms change from the direction of capillary axis to the direction of incident beam gradually,during the experimental period,the charge exchange is observed.The charge patches in the capillaries overcome the transverse momentum of the incident ions,the ions are transmitted by specular scatterings on the inner surface of capillary,and the main transport mechanism of ions in the nanocapillary at the small tilt angles is the charge-patch-assisted collective scatterings on the surface.For a large tilt angle (-2.5°),the transmitted He2+ ions are located in the direction of the incident beam,and He0 atoms are always in the direction of capillary axis,the charge patches cannot overcome the transverse momentum of the incident ions,and the main transport mechanism of ions in the nanocapillary at the large tilt angles is the multiple random inelastic collisions below the surface.This finding increases the knowledge of charged ions through nanocapillary at different tilt angles within dozens of keV energies in many scientific fields.
      Corresponding author: Shao Jian-Xiong, shaojx@lzu.edu.cn;chenxm@lzu.edu.cn ; Chen Xi-Meng, shaojx@lzu.edu.cn;chenxm@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11675067).
    [1]

    El-said A, Heller R, Meissl W, Ritter R, Facsko S, Lemell C, Solleder B, Gebeshuber I, Betz G, Toulemonde M, Möller W, Burgdörfer J, Aumayr F 2008 Phys. Rev. Lett. 100 237601

    [2]

    Kottmann J, Martin O, Smith D, Schultz S 2001 Phys. Rev. B 64 235402

    [3]

    Kumar R, Badel X, Vikor G, Linnros J, Schuch R 2005 Nanotechnology 16 1697

    [4]

    Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L, Juhász Z, Biri S, Fekete é, Iván I, Gáll F, Sulik B, Víkor G, Pálinkás J, Stolterfoht N 2006 Nanotechnology 17 3915

    [5]

    Mo D, Liu J, Duan J L, Yao H J, Chen Y H, Sun Y M, Zhai P F 2012 Mat. Lett. 68 201

    [6]

    Fleischer R L, Price P B, Walker R M 1969 Sci. Amer. 220 30

    [7]

    Lemell C, Burgdörfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237

    [8]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [9]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202

    [10]

    Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y 2007 Phys. Rev. A 76 022712

    [11]

    Stolterfoht N, Hellhammer R, Fink D, Sulik B, Juhász Z, Bodewits E, Dang H M, Hoekstra R 2009 Phys. Rev. A 79 022901

    [12]

    Kanai Y, Hoshino M, Kambara T, Ikeda T, Hellhammer R, Stolterfoht N, Yamazaki Y 2009 Phys. Rev. A 79 012711

    [13]

    Schiessl K, Palfinger W, Lemell C, Burgdörfer J 2005 Nucl. Instrum. Methods Phys. Res. B 232 228

    [14]

    Schiessl K, Palfinger W, Tőkési K, Nowotny H, Lemell C, Burgdörfer J 2005 Phys. Rev. A 72 062902

    [15]

    Schiessl K, Palfinger W, Tőkési K, Nowotny H, Lemell C, Burgdörfer J 2007 Nucl. Instrum. Methods Phys. Res. B 258 150

    [16]

    Lemell C, Schiessl K, Nowotny H, Burgdörfer J 2007 Nucl. Instrum. Methods Phys. Res. B 256 66

    [17]

    Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201

    [18]

    Sun G Z, Chen X M, Wang J, Chen Y F, Xu J K, Zhou C L, Shao J X, Cui Y, Ding B W, Yin Y Z, Wang X A, Lou F J, Lv X Y, Qiu X Y, Jia J J, Chen L, Xi F Y, Chen Z C, Li L T, Liu Z Y 2009 Phys. Rev. A 79 052902

    [19]

    Feng D, Shao J X, Zhao L, Ji M C, Zou X R, Wang G Y, Ma Y L, Zhou W, Zhou H, Li Y, Zhou M, Chen X M 2012 Phys. Rev. A 85 064901

    [20]

    Simon M J, Zhou C L, Döbeli M, Cassimi A, Monnet I, Méry A, Grygiel C, Guillous S, Madi T, Benyagoub A, Lebius H, Mller A M, Shiromaru H, Synal H A 2014 Nucl. Instrum. Methods Phys. Res. B 330 11

    [21]

    Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913

    [22]

    Bai X F, Niu S T, Zhou W, Wang G Y, Pan P, Fang X, Chen X M, Shao J X 2017 Acta Phys. Sin. 66 093401 (in Chinese)[白雄飞, 牛书通, 周旺, 王光义, 潘鹏, 方兴, 陈熙萌, 邵剑雄 2017 66 093401]

    [23]

    Zhou W, Niu S T, Yan X W, Bai X F, Han C Z, Zhang M X, Zhou L H, Yang A X, Pan P, Shao J X, Chen X M 2016 Acta Phys. Sin. 65 103401 (in Chinese)[周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌 2016 65 103401]

    [24]

    Mo D 2009 Ph. D. Dissertation (Lanzhou:Institute of Modern Physics, Chinese Academy of Sciences) (in Chinese)[莫丹 2009 博士学位论文(兰州:中国科学院近代物理研究所)]

    [25]

    Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901

  • [1]

    El-said A, Heller R, Meissl W, Ritter R, Facsko S, Lemell C, Solleder B, Gebeshuber I, Betz G, Toulemonde M, Möller W, Burgdörfer J, Aumayr F 2008 Phys. Rev. Lett. 100 237601

    [2]

    Kottmann J, Martin O, Smith D, Schultz S 2001 Phys. Rev. B 64 235402

    [3]

    Kumar R, Badel X, Vikor G, Linnros J, Schuch R 2005 Nanotechnology 16 1697

    [4]

    Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L, Juhász Z, Biri S, Fekete é, Iván I, Gáll F, Sulik B, Víkor G, Pálinkás J, Stolterfoht N 2006 Nanotechnology 17 3915

    [5]

    Mo D, Liu J, Duan J L, Yao H J, Chen Y H, Sun Y M, Zhai P F 2012 Mat. Lett. 68 201

    [6]

    Fleischer R L, Price P B, Walker R M 1969 Sci. Amer. 220 30

    [7]

    Lemell C, Burgdörfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237

    [8]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [9]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202

    [10]

    Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y 2007 Phys. Rev. A 76 022712

    [11]

    Stolterfoht N, Hellhammer R, Fink D, Sulik B, Juhász Z, Bodewits E, Dang H M, Hoekstra R 2009 Phys. Rev. A 79 022901

    [12]

    Kanai Y, Hoshino M, Kambara T, Ikeda T, Hellhammer R, Stolterfoht N, Yamazaki Y 2009 Phys. Rev. A 79 012711

    [13]

    Schiessl K, Palfinger W, Lemell C, Burgdörfer J 2005 Nucl. Instrum. Methods Phys. Res. B 232 228

    [14]

    Schiessl K, Palfinger W, Tőkési K, Nowotny H, Lemell C, Burgdörfer J 2005 Phys. Rev. A 72 062902

    [15]

    Schiessl K, Palfinger W, Tőkési K, Nowotny H, Lemell C, Burgdörfer J 2007 Nucl. Instrum. Methods Phys. Res. B 258 150

    [16]

    Lemell C, Schiessl K, Nowotny H, Burgdörfer J 2007 Nucl. Instrum. Methods Phys. Res. B 256 66

    [17]

    Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201

    [18]

    Sun G Z, Chen X M, Wang J, Chen Y F, Xu J K, Zhou C L, Shao J X, Cui Y, Ding B W, Yin Y Z, Wang X A, Lou F J, Lv X Y, Qiu X Y, Jia J J, Chen L, Xi F Y, Chen Z C, Li L T, Liu Z Y 2009 Phys. Rev. A 79 052902

    [19]

    Feng D, Shao J X, Zhao L, Ji M C, Zou X R, Wang G Y, Ma Y L, Zhou W, Zhou H, Li Y, Zhou M, Chen X M 2012 Phys. Rev. A 85 064901

    [20]

    Simon M J, Zhou C L, Döbeli M, Cassimi A, Monnet I, Méry A, Grygiel C, Guillous S, Madi T, Benyagoub A, Lebius H, Mller A M, Shiromaru H, Synal H A 2014 Nucl. Instrum. Methods Phys. Res. B 330 11

    [21]

    Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913

    [22]

    Bai X F, Niu S T, Zhou W, Wang G Y, Pan P, Fang X, Chen X M, Shao J X 2017 Acta Phys. Sin. 66 093401 (in Chinese)[白雄飞, 牛书通, 周旺, 王光义, 潘鹏, 方兴, 陈熙萌, 邵剑雄 2017 66 093401]

    [23]

    Zhou W, Niu S T, Yan X W, Bai X F, Han C Z, Zhang M X, Zhou L H, Yang A X, Pan P, Shao J X, Chen X M 2016 Acta Phys. Sin. 65 103401 (in Chinese)[周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌 2016 65 103401]

    [24]

    Mo D 2009 Ph. D. Dissertation (Lanzhou:Institute of Modern Physics, Chinese Academy of Sciences) (in Chinese)[莫丹 2009 博士学位论文(兰州:中国科学院近代物理研究所)]

    [25]

    Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901

  • [1] 左一武, 田晶, 杨清, 胡晓, 江阳. 一种基于大角度倾斜光纤光栅包层模的低频声传感方案.  , 2023, 72(12): 124304. doi: 10.7498/aps.72.20230067
    [2] 黎章龙, 胡长青, 赵梅, 秦继兴, 李整林, 杨雪峰. 基于大掠射角海底反射特性的深海地声参数反演.  , 2022, 71(11): 114302. doi: 10.7498/aps.71.20211915
    [3] 王美欧, 肖倩, 金霞, 曹燕燕, 徐亚东. 基于亚波长金属超构光栅的中红外大角度高效率回射器.  , 2020, 69(1): 014211. doi: 10.7498/aps.69.20191144
    [4] 哈帅, 张文铭, 谢一鸣, 李鹏飞, 靳博, 牛犇, 魏龙, 张琦, 刘中林, 马越, 路迪, 万城亮, 崔莹, 周鹏, 张红强, 陈熙萌. 低能Cl在Al2O3绝缘微孔膜中的输运过程.  , 2020, 69(9): 094101. doi: 10.7498/aps.69.20190933
    [5] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟.  , 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [6] 侯倩男, 吴金荣. 浅海小掠射角的海底界面声反向散射模型的简化.  , 2019, 68(4): 044301. doi: 10.7498/aps.68.20181475
    [7] 王悦, 李伟锋, 施浙杭, 刘海峰, 王辅臣. 稠密颗粒射流倾斜撞击颗粒膜特征.  , 2018, 67(10): 104501. doi: 10.7498/aps.67.20172092
    [8] 牛书通, 潘鹏, 朱炳辉, 宋涵宇, 金屹磊, 禹楼飞, 韩承志, 邵剑雄, 陈熙萌. 30 keV H+在聚碳酸酯微孔膜中动态输运过程的实验和理论研究.  , 2018, 67(20): 203401. doi: 10.7498/aps.67.20181062
    [9] 吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强. 大倾斜角度下基于冷原子重力仪的绝对重力测量.  , 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [10] 耿传文, 夏禹豪, 赵洪阳, 付秋明, 马志斌. 单晶金刚石边缘表面倾斜角度对同质外延生长的影响.  , 2018, 67(24): 248101. doi: 10.7498/aps.67.20181537
    [11] 白雄飞, 牛书通, 周旺, 王光义, 潘鹏, 方兴, 陈熙萌, 邵剑雄. 20 keV质子在聚碳酸酯微孔膜中传输的动态演化过程.  , 2017, 66(9): 093401. doi: 10.7498/aps.66.093401
    [12] 周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌. 100-keV质子在聚碳酸酯微孔膜中传输的动态演化过程.  , 2016, 65(10): 103401. doi: 10.7498/aps.65.103401
    [13] 吴正人, 刘梅, 刘秋升, 宋朝匣, 王思思. 倾斜波动壁面上液膜表面波演化特性的影响.  , 2015, 64(24): 244701. doi: 10.7498/aps.64.244701
    [14] 戴剑锋, 樊学萍, 蒙波, 刘骥飞. 单液滴撞击倾斜液膜飞溅过程的耦合Level Set-VOF模拟.  , 2015, 64(9): 094704. doi: 10.7498/aps.64.094704
    [15] 梁刚涛, 沈胜强, 郭亚丽, 陈觉先, 于欢, 李熠桥. 实验观测液滴撞击倾斜表面液膜的特殊现象.  , 2013, 62(8): 084707. doi: 10.7498/aps.62.084707
    [16] 刁其龙, 黄春琳. 抑制穿过具有倾斜角度的介质探测成像时产生的寄生干涉条纹现象.  , 2012, 61(21): 210204. doi: 10.7498/aps.61.210204
    [17] 陈益峰, 陈熙萌, 娄凤君, 徐进章, 绍剑雄, 孙光智, 王俊, 席发元, 尹永智, 王兴安, 徐俊奎, 崔莹, 丁宝卫. Al2O3微孔膜对60 keV O+离子的“导向”效应.  , 2010, 59(1): 222-226. doi: 10.7498/aps.59.222
    [18] 厉以宇, 顾培夫, 李明宇, 刘 旭, 杨 彗. 波状膜层全角度偏振分束特性的分析.  , 2006, 55(2): 910-913. doi: 10.7498/aps.55.910
    [19] 孙可煦, 易荣清, 杨国洪, 江少恩, 崔延莉, 刘慎业, 丁永坤, 崔明启, 朱佩平, 赵屹东, 朱杰, 郑雷, 张景和. 软x射线平面镜不同掠射角下的反射率标定.  , 2004, 53(4): 1099-1104. doi: 10.7498/aps.53.1099
    [20] 李毓昌. 具微孔柱体扭转问题的一个近似解.  , 1955, 11(5): 371-378. doi: 10.7498/aps.11.371
计量
  • 文章访问数:  5297
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-20
  • 修回日期:  2018-04-17
  • 刊出日期:  2018-09-05

/

返回文章
返回
Baidu
map