Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research and development of continous wave 100 kW absorption harmonicfilter in X-band

Liu Hai-Xu Hou Man-Hong Li Xin-Sheng

Citation:

Research and development of continous wave 100 kW absorption harmonicfilter in X-band

Liu Hai-Xu, Hou Man-Hong, Li Xin-Sheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A gradient leaky-wall waveguide loaded absorbing load filter structure is proposed, which is designed for harmonic suppression in super-high power transmitter of deep-space probe. The attenuation loss characteristics of the filter is analyzed according to the equivalent circuit method, and the massive structure is simulated by the electromagnetic field simulation software. The filter sample which includes one main waveguide, 288 deputy waveguides and 288 absorb loads is processed following the simulating and designing sizes. In order to prevent microwave from leaking and keep good air tightness under the condition of high power, all the components of the filter will be welded together by means of vacuum welding, and then the sample is cleaned ultrasonically. Finally, the filter sample is tested under small signal and large signal separately. According to our test results, the pass band max insertion loss of the filter is 0.3 dB, the min suppression of second harmonic is 75 dB, the min suppression of third harmonic is 50 dB, and the min suppression of fourth harmonic is 35 dB. The measured results show that they are almost the same as the simulation results, and consistent completely with the anticipated. We further conduct the high power experiment on the filter under a large signal of 100 kW, showing that the continuous wave power capacity of the filter can reach up to 100 kW through the power resistance test with the liquid-cooled system. All the test data show that the study and development are very successful. At present, the filer has been applied to a type of ground high power transmitter, and its performances and indicators behave well.
      Corresponding author: Liu Hai-Xu, liuhaixu05@163.com
    • Funds: Project supported by the National Defense Pre-Research Foundation of China (Grant No. 9140A24070815DZ37376).
    [1]

    Jason C, Crusan D, Craig N B 2017 IEEE Aerospace Conference Big Sky, USA, March 4-11, 2017 p1012

    [2]

    Rojina A, John N, Lei C 2017 IEEE Global Communication Conference Singapore, Dec 4-8, 2017 p22

    [3]

    Chai L, Xu X L 2010 Telecommun. Engineer. 50 6 (in Chinese) [柴霖, 许秀玲 2010 电讯技术 50 6]

    [4]

    Dong G L, Li G M, Lei L 2016 China Deep Space Network:System Design and Key Technologies-S/X-band Deep Space TT (Vol. 1) (Beijing:Tsinghua University Press) pp211-225 (in Chinese) [董光亮, 李国民, 雷厉等 2016 中国深空网:系统设计与关键技术-S/X双频段深空测控通信系统(上) (北京:清华大学出版社) 第211225页]

    [5]

    Dainelli V, Serrno F, Tomasi L 2009 International Vacuum Electronics Conference Rome, Italy, April 28-30, 2009 p350

    [6]

    Rolf M, Manfred W 2004 IEEE Aerospace Conference Proceedings Big Sky, USA, March 6-13, 2004 p1124

    [7]

    David L, Yakov V, Bruce C 2001 IEEE Aerospace Conference Proceedings Big Sky, USA, March 10-17, 2001 p1526

    [8]

    Daniel J H, Behrouz K, John B S 2010 Antennas Propagation Society International Symposium Toronto, Canada, July 11-17, 2010 p578

    [9]

    Hou M H, Guo Z K 2015 Electron. Sci. Tech. 28 116 (in Chinese) [侯满宏, 郭忠凯 2015 电子科技 28 116]

    [10]

    Guo Z K, Hou M H 2015 Electron. Sci. Tech. 28 185 (in Chinese) [郭忠凯, 侯满宏 2015 电子科技 28 185]

    [11]

    Zhang H W, Liu M, Li X S 2014 J. Aircraft Measur. Control 33 31 (in Chinese) [张宏伟, 刘敏, 李新胜 2014 飞行器测控学报 33 31]

    [12]

    Han L H, Yu H 2016 Fire Control Radar Technology 45 56 (in Chinese) [韩来辉, 余海 2016 火控雷达技术 45 56]

    [13]

    Gan B B, Wu W C 1973 The Structure and Design of Modern Microwave Filter (Ⅱ) (Beijing:Science and Technology Press) pp312-319 (in Chinese) [甘本袯, 吴万春 1973 现代微波滤波器的结构与设计(下册) (北京:科学出版社) 第312319页]

    [14]

    Xu J 2014 Commun. Countermeas. 33 61 (in Chinese)[徐健 2014 通信对抗 33 61]

    [15]

    Li F J, Du L M 2012 Shipboard Electronic Countermeasure 35 78 (in Chinese) [李福剑, 杜仑铭 2012 舰船电子对抗 35 78]

    [16]

    Dai X W, Qian J 2017 J. Microwaves 33 54 (in Chinese)[戴小伟, 钱捷 2017 微波学报 33 54]

    [17]

    Zhao P 2015 M. S. Dissertation (Chengdu:University of Electronic Science and Technology of China (in Chinese)[赵鹏 2015 硕士学位论文 (成都:电子科技大学) ]

    [18]

    Guo L Q, Jiao Y C, Tang J M 2004 Chin. J. Sci. Instrum. 25 30 (in Chinese) [郭利强, 焦永昌, 唐家明 2004仪器仪表学报 25 30]

    [19]

    Cristal E G 1963 IEEE Trans. MTT 11 186

    [20]

    Zhang Y J, Wang X L, Li L 2007 Radar Sci. Technol. 5 394 (in Chinese) [张轶江, 王小陆, 李磊 2007 雷达科学与技术 5 394]

  • [1]

    Jason C, Crusan D, Craig N B 2017 IEEE Aerospace Conference Big Sky, USA, March 4-11, 2017 p1012

    [2]

    Rojina A, John N, Lei C 2017 IEEE Global Communication Conference Singapore, Dec 4-8, 2017 p22

    [3]

    Chai L, Xu X L 2010 Telecommun. Engineer. 50 6 (in Chinese) [柴霖, 许秀玲 2010 电讯技术 50 6]

    [4]

    Dong G L, Li G M, Lei L 2016 China Deep Space Network:System Design and Key Technologies-S/X-band Deep Space TT (Vol. 1) (Beijing:Tsinghua University Press) pp211-225 (in Chinese) [董光亮, 李国民, 雷厉等 2016 中国深空网:系统设计与关键技术-S/X双频段深空测控通信系统(上) (北京:清华大学出版社) 第211225页]

    [5]

    Dainelli V, Serrno F, Tomasi L 2009 International Vacuum Electronics Conference Rome, Italy, April 28-30, 2009 p350

    [6]

    Rolf M, Manfred W 2004 IEEE Aerospace Conference Proceedings Big Sky, USA, March 6-13, 2004 p1124

    [7]

    David L, Yakov V, Bruce C 2001 IEEE Aerospace Conference Proceedings Big Sky, USA, March 10-17, 2001 p1526

    [8]

    Daniel J H, Behrouz K, John B S 2010 Antennas Propagation Society International Symposium Toronto, Canada, July 11-17, 2010 p578

    [9]

    Hou M H, Guo Z K 2015 Electron. Sci. Tech. 28 116 (in Chinese) [侯满宏, 郭忠凯 2015 电子科技 28 116]

    [10]

    Guo Z K, Hou M H 2015 Electron. Sci. Tech. 28 185 (in Chinese) [郭忠凯, 侯满宏 2015 电子科技 28 185]

    [11]

    Zhang H W, Liu M, Li X S 2014 J. Aircraft Measur. Control 33 31 (in Chinese) [张宏伟, 刘敏, 李新胜 2014 飞行器测控学报 33 31]

    [12]

    Han L H, Yu H 2016 Fire Control Radar Technology 45 56 (in Chinese) [韩来辉, 余海 2016 火控雷达技术 45 56]

    [13]

    Gan B B, Wu W C 1973 The Structure and Design of Modern Microwave Filter (Ⅱ) (Beijing:Science and Technology Press) pp312-319 (in Chinese) [甘本袯, 吴万春 1973 现代微波滤波器的结构与设计(下册) (北京:科学出版社) 第312319页]

    [14]

    Xu J 2014 Commun. Countermeas. 33 61 (in Chinese)[徐健 2014 通信对抗 33 61]

    [15]

    Li F J, Du L M 2012 Shipboard Electronic Countermeasure 35 78 (in Chinese) [李福剑, 杜仑铭 2012 舰船电子对抗 35 78]

    [16]

    Dai X W, Qian J 2017 J. Microwaves 33 54 (in Chinese)[戴小伟, 钱捷 2017 微波学报 33 54]

    [17]

    Zhao P 2015 M. S. Dissertation (Chengdu:University of Electronic Science and Technology of China (in Chinese)[赵鹏 2015 硕士学位论文 (成都:电子科技大学) ]

    [18]

    Guo L Q, Jiao Y C, Tang J M 2004 Chin. J. Sci. Instrum. 25 30 (in Chinese) [郭利强, 焦永昌, 唐家明 2004仪器仪表学报 25 30]

    [19]

    Cristal E G 1963 IEEE Trans. MTT 11 186

    [20]

    Zhang Y J, Wang X L, Li L 2007 Radar Sci. Technol. 5 394 (in Chinese) [张轶江, 王小陆, 李磊 2007 雷达科学与技术 5 394]

  • [1] Zhou Yu-Yuan, Sun Chao, Xie Lei. Shallow sea matching field continuous tracking method based on trajectory Poisson multi-Bernoulli hybrid filter. Acta Physica Sinica, 2023, 72(18): 184301. doi: 10.7498/aps.72.20230124
    [2] Wang Zai-Yuan, Wang Jie-Hao, Li Yu-Hang, Liu Qiang. Millihertz band low-intensity-noise single-frequency laser for space gravitational wave detection. Acta Physica Sinica, 2023, 72(5): 054205. doi: 10.7498/aps.72.20222127
    [3] Zhang Yun-Chuan, Fan Li, Wei Chen-Fei, Gu Xiao-Min, Ren Si-Xian. Continuous-wave intracavity YVO4/BaWO4 Raman laser pumped by a wavelength-locked 878.9 nm laser diode. Acta Physica Sinica, 2018, 67(2): 024206. doi: 10.7498/aps.67.20171848
    [4] Zhang Xin, Zhang Yun-Chuan, Li Jian, Li Ren-Jie, Song Qing-Kun, Zhang Jia-Le, Fan Li. Research and design of continuous-wave Nd:YVO4 self-Raman laser in-band pumped by a wavelength-locked laser diode. Acta Physica Sinica, 2017, 66(19): 194203. doi: 10.7498/aps.66.194203
    [5] Zhao Feng, Long Shu-Ming, Zhang Yuan-Yuan, Wang Xin-Ke, Ye Jia-Sheng, Zhang Yan. Fingerprint data extraction from Chinese herbal medicines with terahertz spectrum based on second-order harmonic oscillator model. Acta Physica Sinica, 2015, 64(2): 024202. doi: 10.7498/aps.64.024202
    [6] Chen Zai-Gao, Wang Jian-Guo, Wang Yue, Zhang Dian-Hui, Qiao Hai-Liang. Effect of Ohmic loss on coaxial surface wave oscillator in terahertz band. Acta Physica Sinica, 2015, 64(7): 070703. doi: 10.7498/aps.64.070703
    [7] Yu Yong-Ji, Chen Xin-Yu, Cheng Li-Bo, Wang Chao, Wu Chun-Ting, Dong Yuan, Li Shu-Tao, Jin Guang-Yong. Continuous-wave 1.57 m/3.84 m intra-cavity multiple optical parametric oscillator based on MgO:APLN. Acta Physica Sinica, 2015, 64(22): 224215. doi: 10.7498/aps.64.224215
    [8] Liu Hao, Shu Rong, Hong Guang-Lie, Zheng Long, Ge Ye, Hu Yi-Hua. Continuous-wave modulation differential absorption lidar system for CO2 measurement. Acta Physica Sinica, 2014, 63(10): 104214. doi: 10.7498/aps.63.104214
    [9] Zhang Hui-Yun, Liu Meng, Zhang Yu-Ping, Shen Duan-Long, Wu Zhi-Xin, Yin Yi-Heng, Li De-Hua. Research of continuous wave pumping waveguide to generate terahertz laser. Acta Physica Sinica, 2014, 63(2): 020702. doi: 10.7498/aps.63.020702
    [10] Fan Li, Chen Hai-Tao, Zhu Jun. Laser diode end-pumped continuous-wave Nd:YVO4 self-Raman laser at 1175 nm. Acta Physica Sinica, 2014, 63(15): 154208. doi: 10.7498/aps.63.154208
    [11] Wang Wu-Song, Zhang Li-Wei, Ran Jia, Zhang Ye-Wen. Experimental studies of the surface plasmon polaritons waveguide filter in microwave band. Acta Physica Sinica, 2013, 62(18): 184203. doi: 10.7498/aps.62.184203
    [12] Liu Huan, Wang Wei, Gong Ma-Li. Corner-pumped Nd:YAG/YAG composite slab continuous-wave 946 nm laser. Acta Physica Sinica, 2013, 62(14): 144205. doi: 10.7498/aps.62.144205
    [13] Diao Qi-Long, Huang Chun-Lin. Restraining parasitic interference fringe phenomenon in detection imaging through the medium with inclined angle. Acta Physica Sinica, 2012, 61(21): 210204. doi: 10.7498/aps.61.210204
    [14] Lu Yuan-Fu, Xie Shi-Yong, Bo Yong, Cui Qian-Jin, Zong Nan, Gao Hong-Wei, Peng Qin-Jun, Cui Da-Fu, Xu Zu-Yan. A high power quasi-continuous-wave yellow laser based on intracavity sum-frequency generation. Acta Physica Sinica, 2009, 58(2): 970-974. doi: 10.7498/aps.58.970
    [15] Zhao Wen-Shan, He Yi-Gang. An improved method for implementation of wavelet transform utilizing switched-current filters. Acta Physica Sinica, 2009, 58(2): 843-851. doi: 10.7498/aps.58.843
    [16] Zhang Yu-Ping, Zhang Hui-Yun, He Zhi-Hong, Wang Peng, Li Xi-Fu, Yao Jian-Quan. A 36 W intracavity-frequency-doubled diode-side-pumped Nd:YAG/KTP continuous wave green laser. Acta Physica Sinica, 2009, 58(7): 4647-4651. doi: 10.7498/aps.58.4647
    [17] Liu Huan, Gong Ma-Li. Compact laser diode end-pumped Nd:YAG intracavity frequency-tripled quasi-continuous 355 nm laser. Acta Physica Sinica, 2009, 58(10): 7000-7004. doi: 10.7498/aps.58.7000
    [18] Hu Qin-Chun, He Yi-Gang, Guo Di-Xin, Li Hong-Min. Analog implementation of wavelet transform based on switched-current filter circuits. Acta Physica Sinica, 2006, 55(2): 641-647. doi: 10.7498/aps.55.641
    [19] YAN WEN-SHENG, FAN JIANG-WEI, LI YU-ZHI, CUI HONG-BIN, LIU WEN-HAN, ZHANG XIN-YI, WEI SHI-QIANG. LOCAL STRUCTURES OF MECHANICALLY ALLOYED Fe100-xCux SOLID SOLUTIONS STUDIED BY X-RAY ABSORPTION FINE STRUCTURE. Acta Physica Sinica, 2001, 50(4): 758-764. doi: 10.7498/aps.50.758
    [20] ZHANG DE. SUPPRESSION OF DIRECT TRANSMISSION IN SAW RASONATOR FILTERS BY INVERSE PHASE IDT. Acta Physica Sinica, 1978, 27(3): 349-352. doi: 10.7498/aps.27.349
Metrics
  • Abstract views:  5921
  • PDF Downloads:  71
  • Cited By: 0
Publishing process
  • Received Date:  30 March 2018
  • Accepted Date:  26 June 2018
  • Published Online:  05 October 2018

/

返回文章
返回
Baidu
map