搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X频段连续波100 kW吸收式谐波滤波器研制

刘海旭 侯满宏 李新胜

引用本文:
Citation:

X频段连续波100 kW吸收式谐波滤波器研制

刘海旭, 侯满宏, 李新胜

Research and development of continous wave 100 kW absorption harmonicfilter in X-band

Liu Hai-Xu, Hou Man-Hong, Li Xin-Sheng
PDF
导出引用
  • 为了抑制深空探测高功率发射机谐波能量对接收机的干扰,提出了一种基于渐变漏壁式波导加载吸收负载结构的超大功率谐波滤波器.分析了该结构滤波器衰减损耗特性,并结合电磁场仿真软件,对滤波器整体结构进行了仿真,依据仿真尺寸对滤波器进行了结构设计和样件加工,经过对样件测试,滤波器通带最大插入损耗小于0.3 dB,二次、三次及四次谐波抑制度分别大于75,50,35 dB,测试结果与仿真结果基本一致.对滤波器样件进行了高功率实验,在外加液冷条件下,连续波功率容量可达100 kW以上,成功研制出了一种X频段吸收式超大功率谐波滤波器,并已经应用于某型号大功率地面发射机,指标性能良好.
    A gradient leaky-wall waveguide loaded absorbing load filter structure is proposed, which is designed for harmonic suppression in super-high power transmitter of deep-space probe. The attenuation loss characteristics of the filter is analyzed according to the equivalent circuit method, and the massive structure is simulated by the electromagnetic field simulation software. The filter sample which includes one main waveguide, 288 deputy waveguides and 288 absorb loads is processed following the simulating and designing sizes. In order to prevent microwave from leaking and keep good air tightness under the condition of high power, all the components of the filter will be welded together by means of vacuum welding, and then the sample is cleaned ultrasonically. Finally, the filter sample is tested under small signal and large signal separately. According to our test results, the pass band max insertion loss of the filter is 0.3 dB, the min suppression of second harmonic is 75 dB, the min suppression of third harmonic is 50 dB, and the min suppression of fourth harmonic is 35 dB. The measured results show that they are almost the same as the simulation results, and consistent completely with the anticipated. We further conduct the high power experiment on the filter under a large signal of 100 kW, showing that the continuous wave power capacity of the filter can reach up to 100 kW through the power resistance test with the liquid-cooled system. All the test data show that the study and development are very successful. At present, the filer has been applied to a type of ground high power transmitter, and its performances and indicators behave well.
      通信作者: 刘海旭, liuhaixu05@163.com
    • 基金项目: 国防预研基金(批准号:9140A24070815DZ37376)资助的课题.
      Corresponding author: Liu Hai-Xu, liuhaixu05@163.com
    • Funds: Project supported by the National Defense Pre-Research Foundation of China (Grant No. 9140A24070815DZ37376).
    [1]

    Jason C, Crusan D, Craig N B 2017 IEEE Aerospace Conference Big Sky, USA, March 4-11, 2017 p1012

    [2]

    Rojina A, John N, Lei C 2017 IEEE Global Communication Conference Singapore, Dec 4-8, 2017 p22

    [3]

    Chai L, Xu X L 2010 Telecommun. Engineer. 50 6 (in Chinese) [柴霖, 许秀玲 2010 电讯技术 50 6]

    [4]

    Dong G L, Li G M, Lei L 2016 China Deep Space Network:System Design and Key Technologies-S/X-band Deep Space TT (Vol. 1) (Beijing:Tsinghua University Press) pp211-225 (in Chinese) [董光亮, 李国民, 雷厉等 2016 中国深空网:系统设计与关键技术-S/X双频段深空测控通信系统(上) (北京:清华大学出版社) 第211225页]

    [5]

    Dainelli V, Serrno F, Tomasi L 2009 International Vacuum Electronics Conference Rome, Italy, April 28-30, 2009 p350

    [6]

    Rolf M, Manfred W 2004 IEEE Aerospace Conference Proceedings Big Sky, USA, March 6-13, 2004 p1124

    [7]

    David L, Yakov V, Bruce C 2001 IEEE Aerospace Conference Proceedings Big Sky, USA, March 10-17, 2001 p1526

    [8]

    Daniel J H, Behrouz K, John B S 2010 Antennas Propagation Society International Symposium Toronto, Canada, July 11-17, 2010 p578

    [9]

    Hou M H, Guo Z K 2015 Electron. Sci. Tech. 28 116 (in Chinese) [侯满宏, 郭忠凯 2015 电子科技 28 116]

    [10]

    Guo Z K, Hou M H 2015 Electron. Sci. Tech. 28 185 (in Chinese) [郭忠凯, 侯满宏 2015 电子科技 28 185]

    [11]

    Zhang H W, Liu M, Li X S 2014 J. Aircraft Measur. Control 33 31 (in Chinese) [张宏伟, 刘敏, 李新胜 2014 飞行器测控学报 33 31]

    [12]

    Han L H, Yu H 2016 Fire Control Radar Technology 45 56 (in Chinese) [韩来辉, 余海 2016 火控雷达技术 45 56]

    [13]

    Gan B B, Wu W C 1973 The Structure and Design of Modern Microwave Filter (Ⅱ) (Beijing:Science and Technology Press) pp312-319 (in Chinese) [甘本袯, 吴万春 1973 现代微波滤波器的结构与设计(下册) (北京:科学出版社) 第312319页]

    [14]

    Xu J 2014 Commun. Countermeas. 33 61 (in Chinese)[徐健 2014 通信对抗 33 61]

    [15]

    Li F J, Du L M 2012 Shipboard Electronic Countermeasure 35 78 (in Chinese) [李福剑, 杜仑铭 2012 舰船电子对抗 35 78]

    [16]

    Dai X W, Qian J 2017 J. Microwaves 33 54 (in Chinese)[戴小伟, 钱捷 2017 微波学报 33 54]

    [17]

    Zhao P 2015 M. S. Dissertation (Chengdu:University of Electronic Science and Technology of China (in Chinese)[赵鹏 2015 硕士学位论文 (成都:电子科技大学) ]

    [18]

    Guo L Q, Jiao Y C, Tang J M 2004 Chin. J. Sci. Instrum. 25 30 (in Chinese) [郭利强, 焦永昌, 唐家明 2004仪器仪表学报 25 30]

    [19]

    Cristal E G 1963 IEEE Trans. MTT 11 186

    [20]

    Zhang Y J, Wang X L, Li L 2007 Radar Sci. Technol. 5 394 (in Chinese) [张轶江, 王小陆, 李磊 2007 雷达科学与技术 5 394]

  • [1]

    Jason C, Crusan D, Craig N B 2017 IEEE Aerospace Conference Big Sky, USA, March 4-11, 2017 p1012

    [2]

    Rojina A, John N, Lei C 2017 IEEE Global Communication Conference Singapore, Dec 4-8, 2017 p22

    [3]

    Chai L, Xu X L 2010 Telecommun. Engineer. 50 6 (in Chinese) [柴霖, 许秀玲 2010 电讯技术 50 6]

    [4]

    Dong G L, Li G M, Lei L 2016 China Deep Space Network:System Design and Key Technologies-S/X-band Deep Space TT (Vol. 1) (Beijing:Tsinghua University Press) pp211-225 (in Chinese) [董光亮, 李国民, 雷厉等 2016 中国深空网:系统设计与关键技术-S/X双频段深空测控通信系统(上) (北京:清华大学出版社) 第211225页]

    [5]

    Dainelli V, Serrno F, Tomasi L 2009 International Vacuum Electronics Conference Rome, Italy, April 28-30, 2009 p350

    [6]

    Rolf M, Manfred W 2004 IEEE Aerospace Conference Proceedings Big Sky, USA, March 6-13, 2004 p1124

    [7]

    David L, Yakov V, Bruce C 2001 IEEE Aerospace Conference Proceedings Big Sky, USA, March 10-17, 2001 p1526

    [8]

    Daniel J H, Behrouz K, John B S 2010 Antennas Propagation Society International Symposium Toronto, Canada, July 11-17, 2010 p578

    [9]

    Hou M H, Guo Z K 2015 Electron. Sci. Tech. 28 116 (in Chinese) [侯满宏, 郭忠凯 2015 电子科技 28 116]

    [10]

    Guo Z K, Hou M H 2015 Electron. Sci. Tech. 28 185 (in Chinese) [郭忠凯, 侯满宏 2015 电子科技 28 185]

    [11]

    Zhang H W, Liu M, Li X S 2014 J. Aircraft Measur. Control 33 31 (in Chinese) [张宏伟, 刘敏, 李新胜 2014 飞行器测控学报 33 31]

    [12]

    Han L H, Yu H 2016 Fire Control Radar Technology 45 56 (in Chinese) [韩来辉, 余海 2016 火控雷达技术 45 56]

    [13]

    Gan B B, Wu W C 1973 The Structure and Design of Modern Microwave Filter (Ⅱ) (Beijing:Science and Technology Press) pp312-319 (in Chinese) [甘本袯, 吴万春 1973 现代微波滤波器的结构与设计(下册) (北京:科学出版社) 第312319页]

    [14]

    Xu J 2014 Commun. Countermeas. 33 61 (in Chinese)[徐健 2014 通信对抗 33 61]

    [15]

    Li F J, Du L M 2012 Shipboard Electronic Countermeasure 35 78 (in Chinese) [李福剑, 杜仑铭 2012 舰船电子对抗 35 78]

    [16]

    Dai X W, Qian J 2017 J. Microwaves 33 54 (in Chinese)[戴小伟, 钱捷 2017 微波学报 33 54]

    [17]

    Zhao P 2015 M. S. Dissertation (Chengdu:University of Electronic Science and Technology of China (in Chinese)[赵鹏 2015 硕士学位论文 (成都:电子科技大学) ]

    [18]

    Guo L Q, Jiao Y C, Tang J M 2004 Chin. J. Sci. Instrum. 25 30 (in Chinese) [郭利强, 焦永昌, 唐家明 2004仪器仪表学报 25 30]

    [19]

    Cristal E G 1963 IEEE Trans. MTT 11 186

    [20]

    Zhang Y J, Wang X L, Li L 2007 Radar Sci. Technol. 5 394 (in Chinese) [张轶江, 王小陆, 李磊 2007 雷达科学与技术 5 394]

  • [1] 周玉媛, 孙超, 谢磊. 基于轨迹泊松多伯努利混合滤波器的浅海匹配场连续跟踪方法.  , 2023, 72(18): 184301. doi: 10.7498/aps.72.20230124
    [2] 王在渊, 王洁浩, 李宇航, 柳强. 面向空间引力波探测的毫赫兹频段低强度噪声单频激光器.  , 2023, 72(5): 054205. doi: 10.7498/aps.72.20222127
    [3] 张蕴川, 樊莉, 魏晨飞, 顾晓敏, 任思贤. 波长锁定878.9 nm激光二极管抽运内腔式YVO4/BaWO4连续波拉曼激光器.  , 2018, 67(2): 024206. doi: 10.7498/aps.67.20171848
    [4] 张鑫, 张蕴川, 李建, 李仁杰, 宋庆坤, 张佳乐, 樊莉. 波长锁定激光二极管共振泵浦Nd:YVO4晶体连续波自拉曼激光器的设计与研究.  , 2017, 66(19): 194203. doi: 10.7498/aps.66.194203
    [5] 赵峰, 龙姝明, 张圆圆, 王新柯, 叶佳声, 张岩. 太赫兹电磁波低通滤波器与中药材指纹数据提取.  , 2015, 64(2): 024202. doi: 10.7498/aps.64.024202
    [6] 陈再高, 王建国, 王玥, 张殿辉, 乔海亮. 欧姆损耗对太赫兹频段同轴表面波振荡器的影响.  , 2015, 64(7): 070703. doi: 10.7498/aps.64.070703
    [7] 于永吉, 陈薪羽, 成丽波, 王超, 吴春婷, 董渊, 李述涛, 金光勇. 基于MgO:APLN的1.57m/3.84m连续波内腔多光参量振荡器研究.  , 2015, 64(22): 224215. doi: 10.7498/aps.64.224215
    [8] 刘豪, 舒嵘, 洪光烈, 郑龙, 葛烨, 胡以华. 连续波差分吸收激光雷达测量大气CO2.  , 2014, 63(10): 104214. doi: 10.7498/aps.63.104214
    [9] 张会云, 刘蒙, 张玉萍, 申端龙, 吴志心, 尹贻恒, 李德华. 连续波抽运气体波导产生太赫兹激光的理论研究.  , 2014, 63(2): 020702. doi: 10.7498/aps.63.020702
    [10] 樊莉, 陈海涛, 朱骏. 激光二极管抽运的Nd:YVO4连续自拉曼1175nm激光器.  , 2014, 63(15): 154208. doi: 10.7498/aps.63.154208
    [11] 王五松, 张利伟, 冉佳, 张冶文. 微波频段表面等离子激元波导滤波器的实验研究.  , 2013, 62(18): 184203. doi: 10.7498/aps.62.184203
    [12] 刘欢, 王巍, 巩马理. 角抽运Nd:YAG复合板条946 nm连续运转激光器.  , 2013, 62(14): 144205. doi: 10.7498/aps.62.144205
    [13] 刁其龙, 黄春琳. 抑制穿过具有倾斜角度的介质探测成像时产生的寄生干涉条纹现象.  , 2012, 61(21): 210204. doi: 10.7498/aps.61.210204
    [14] 鲁远甫, 谢仕永, 薄勇, 崔前进, 宗楠, 高宏伟, 彭钦军, 崔大复, 许祖彦. 高功率准连续波腔内和频全固态黄光激光器.  , 2009, 58(2): 970-974. doi: 10.7498/aps.58.970
    [15] 赵文山, 何怡刚. 一种改进的开关电流滤波器实现小波变换的方法.  , 2009, 58(2): 843-851. doi: 10.7498/aps.58.843
    [16] 张玉萍, 张会云, 何志红, 王鹏, 李喜福, 姚建铨. 36 W侧面抽运腔内倍频Nd:YAG/KTP连续绿光激光器.  , 2009, 58(7): 4647-4651. doi: 10.7498/aps.58.4647
    [17] 刘欢, 巩马理. 紧凑型激光二极管抽运全固态355 nm连续波紫外激光器.  , 2009, 58(10): 7000-7004. doi: 10.7498/aps.58.7000
    [18] 胡沁春, 何怡刚, 郭迪新, 李宏民. 基于开关电流技术的小波变换的滤波器电路实现.  , 2006, 55(2): 641-647. doi: 10.7498/aps.55.641
    [19] 闫文胜, 范江玮, 李玉芝, 崔宏滨, 刘文汉, 张新夷, 韦世强. 机械合金化Fe100-xCux体系的X射线吸收精细结构研究.  , 2001, 50(4): 758-764. doi: 10.7498/aps.50.758
    [20] 章德. 用倒相换能器抑制声表面波谐振滤波器的直达讯号.  , 1978, 27(3): 349-352. doi: 10.7498/aps.27.349
计量
  • 文章访问数:  5920
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-30
  • 修回日期:  2018-06-26
  • 刊出日期:  2018-10-05

/

返回文章
返回
Baidu
map