-
采用波长锁定878.9 nm激光二极管共振抽运复合Nd:YVO4激光晶体,改善热效应的同时提高抽运吸收率,分别以YVO4和BaWO4晶体作为拉曼介质,实验和理论研究了晶体性能、谐振腔结构和稳定性对内腔分体式连续波拉曼激光器性能的影响.结果表明:由于内腔分体式拉曼激光器腔长较长,谐振腔稳定性对激光器性能影响较大,选择高增益的拉曼晶体,不仅可获得高拉曼转换效率,还能一定程度上减轻热效应.而平凹腔结构中输出镜的曲率半径越小,拉曼晶体中基频光的功率密度越大,腔的动态稳定区越宽,获得的拉曼激光输出功率更高.最终以30 mm的BaWO4晶体作为拉曼介质,在抽运功率25.1 W时,获得了3.02 W的连续拉曼激光输出,光-光转换效率达到12%.In this paper, the composite Nd:YVO4 laser crystal is in-band pumped by a wavelength-locked laser diode at 878.9 nm, with the purpose of reducing thermal effects and improving pump absorption simultaneously. By using the YVO4 and BaWO4 crystals as Raman media, the influences of crystal properties, resonator structure and stability on the performance of continuous-wave intracavity Raman laser are investigated experimentally and theoretically. The results show that the resonator stability greatly affects laser performance due to the long cavity length of intracavity Raman laser. By choosing the Raman medium with high Raman gain, we can not only obtain higher Raman conversion efficiency, but also reduce the thermal effect to a certain extent. Furthermore, the smaller the curvature radius of the output mirror in the plano-concave cavity structure, the greater the power density of the fundamental laser in the Raman crystal is and the wider the dynamic stability region of the resonator, and hence the higher output power of the Raman laser can be achieved. Finally, by using 30-mm BaWO4 crystal as Raman medium, a highest Raman output of 3.02 W is obtained at a pump power of 25.1 W, corresponding to a diode-to-Stokes optical conversion efficiency of 12%.
-
Keywords:
- intracavity Raman laser /
- continuous-wave /
- in-band pumping /
- design of laser cavity
[1] Pask H M 2003 Prog. Quant. Electron. 27 3
[2] Cerny P, Jelinkova H, Zverev P G, Basiev T T 2004 Prog. Quant. Electron. 28 113
[3] Piper J A, Pask H M 2007 IEEE J. Sel. Top. Quant. 13 692
[4] Grabtchikov A S, Lisinetskii V A, Orlovich V A, Schmitt M, Maksimenka R, Kiefer W 2004 Opt. Lett. 29 2524
[5] Bonne G M, Lin J P, Kemp A J, Wang J Y Zhang H J Spence D J, Pask H M 2014 Opt. Express 22 7492
[6] Neto J J, Artlett C, Lee A, Lin J P, Spence D, Piper J Wetter N U, Pask H 2014 Opt. Mater. Express 4 889
[7] Tang C Y, Zhuang W Z, Su K W, Chen Y F 2015 IEEE J. Sel. Top. Quant. 21 142
[8] Lee C Y, Chang C C, Sung C L, Chen Y F 2015 Opt. Express 23 22765
[9] Kores C C, Jakutis-Neto J, Geskus D, Pask H M, Wetter N U 2015 Opt. Lett. 40 3524
[10] Sarang S, Williams R J, Lux O, Kitzler O, Mckay A, Jasbeer H, Mildren R P 2016 Opt. Express 24 21463
[11] Pask H M 2005 Opt. Lett. 30 2454
[12] Orlovich V A, Burakevich V N, Grabtchikov A S, Lisinetskii V A, Demidovich A A, Eichler H J, Turpin P Y 2005 Laser Phys. Lett. 3 71
[13] Dekker P, Pask H M, Piper J A 2007 Opt. Lett. 32 1114
[14] Fan L, Fan Y X, Duan Y H, Wang H T, Jia G H, Tu C Y 2009 Appl. Phys. B 94 553
[15] Fan L, Fan Y X, Li Y Q, Zhang H J, Wang Q, Wang J, Wang H T 2009 Opt. Lett. 34 1687
[16] Lee A J, Pask H M, Piper J A, Zhang H J, Wang J Y 2010 Opt. Express 18 5984
[17] Jakutis-Neto J, Lin J P, Wetter N U, Pask H 2012 Opt. Express 20 9841
[18] Wang X L, Dong J, Wang X J, Xu J, Ueda K I, Kaminskii A A 2016 Opt. Lett. 41 3559
[19] Ding X, Fan C, Sheng Q, Li B, Yu X Y, Zhang G Z, Sun B, Wu L, Zhang H Y, Liu J, Jiang P B, Zhang W, Zhao C, Yao J Q 2014 Opt. Express 22 29121
[20] Sheng Q, Ding X, Li B, Yu X Y, Fan C, Zhang H Y, Liu J, Jiang P B, Zhang W, Wen W Q, Sun B, Yao J Q 2014 J. Opt. 16 105206
[21] Li B, Lei P, Sun B, Bai Y B 2017 Appl. Opt. 56 1542
[22] Zhang X, Zhang Y C, Li J, Li R J, Song Q K, Zhang J L, Fan L 2017 Acta Phys. Sin. 66 194203 (in Chinese)[张鑫, 张蕴川, 李建, 李仁杰, 宋庆坤, 张佳乐, 樊莉 2017 66 194203]
[23] Innocenzi M E, Yura H T, Fincher C L, Fields R A 1990 Appl. Phys. Lett. 56 1831
[24] Shang C 2013 M. S. Dissertation (Tianjin: Tianjin University) (in Chinese)[尚策 2013 硕士学位论文(天津: 天津大学)]
[25] Mao Y F, Zhang H L, Xu L, Deng B, Sang S H, He J L, Xing J C, Xin J G, Jiang Y 2015 Acta Phys. Sin. 64 014203 (in Chinese)[毛叶飞, 张恒利, 徐浏, 邓波, 桑思晗, 何京良, 邢冀川, 辛建国, 江毅 2015 64 014203]
[26] Sheng Q, Ding X, Li B, Yu X Y, Fan C, Zhang H Y, Liu J, Jiang P B, Zhang W, Wen W Q, Sun B, Yao J Q 2014 J. Opt. 16 105206
[27] Kaminskii A A, Ueda K, Eichler H J 2001 Opt. Commun. 194 201
[28] Zverev P G, Basiev T T, Sobol A A 2000 Quantum Electron 30 55
-
[1] Pask H M 2003 Prog. Quant. Electron. 27 3
[2] Cerny P, Jelinkova H, Zverev P G, Basiev T T 2004 Prog. Quant. Electron. 28 113
[3] Piper J A, Pask H M 2007 IEEE J. Sel. Top. Quant. 13 692
[4] Grabtchikov A S, Lisinetskii V A, Orlovich V A, Schmitt M, Maksimenka R, Kiefer W 2004 Opt. Lett. 29 2524
[5] Bonne G M, Lin J P, Kemp A J, Wang J Y Zhang H J Spence D J, Pask H M 2014 Opt. Express 22 7492
[6] Neto J J, Artlett C, Lee A, Lin J P, Spence D, Piper J Wetter N U, Pask H 2014 Opt. Mater. Express 4 889
[7] Tang C Y, Zhuang W Z, Su K W, Chen Y F 2015 IEEE J. Sel. Top. Quant. 21 142
[8] Lee C Y, Chang C C, Sung C L, Chen Y F 2015 Opt. Express 23 22765
[9] Kores C C, Jakutis-Neto J, Geskus D, Pask H M, Wetter N U 2015 Opt. Lett. 40 3524
[10] Sarang S, Williams R J, Lux O, Kitzler O, Mckay A, Jasbeer H, Mildren R P 2016 Opt. Express 24 21463
[11] Pask H M 2005 Opt. Lett. 30 2454
[12] Orlovich V A, Burakevich V N, Grabtchikov A S, Lisinetskii V A, Demidovich A A, Eichler H J, Turpin P Y 2005 Laser Phys. Lett. 3 71
[13] Dekker P, Pask H M, Piper J A 2007 Opt. Lett. 32 1114
[14] Fan L, Fan Y X, Duan Y H, Wang H T, Jia G H, Tu C Y 2009 Appl. Phys. B 94 553
[15] Fan L, Fan Y X, Li Y Q, Zhang H J, Wang Q, Wang J, Wang H T 2009 Opt. Lett. 34 1687
[16] Lee A J, Pask H M, Piper J A, Zhang H J, Wang J Y 2010 Opt. Express 18 5984
[17] Jakutis-Neto J, Lin J P, Wetter N U, Pask H 2012 Opt. Express 20 9841
[18] Wang X L, Dong J, Wang X J, Xu J, Ueda K I, Kaminskii A A 2016 Opt. Lett. 41 3559
[19] Ding X, Fan C, Sheng Q, Li B, Yu X Y, Zhang G Z, Sun B, Wu L, Zhang H Y, Liu J, Jiang P B, Zhang W, Zhao C, Yao J Q 2014 Opt. Express 22 29121
[20] Sheng Q, Ding X, Li B, Yu X Y, Fan C, Zhang H Y, Liu J, Jiang P B, Zhang W, Wen W Q, Sun B, Yao J Q 2014 J. Opt. 16 105206
[21] Li B, Lei P, Sun B, Bai Y B 2017 Appl. Opt. 56 1542
[22] Zhang X, Zhang Y C, Li J, Li R J, Song Q K, Zhang J L, Fan L 2017 Acta Phys. Sin. 66 194203 (in Chinese)[张鑫, 张蕴川, 李建, 李仁杰, 宋庆坤, 张佳乐, 樊莉 2017 66 194203]
[23] Innocenzi M E, Yura H T, Fincher C L, Fields R A 1990 Appl. Phys. Lett. 56 1831
[24] Shang C 2013 M. S. Dissertation (Tianjin: Tianjin University) (in Chinese)[尚策 2013 硕士学位论文(天津: 天津大学)]
[25] Mao Y F, Zhang H L, Xu L, Deng B, Sang S H, He J L, Xing J C, Xin J G, Jiang Y 2015 Acta Phys. Sin. 64 014203 (in Chinese)[毛叶飞, 张恒利, 徐浏, 邓波, 桑思晗, 何京良, 邢冀川, 辛建国, 江毅 2015 64 014203]
[26] Sheng Q, Ding X, Li B, Yu X Y, Fan C, Zhang H Y, Liu J, Jiang P B, Zhang W, Wen W Q, Sun B, Yao J Q 2014 J. Opt. 16 105206
[27] Kaminskii A A, Ueda K, Eichler H J 2001 Opt. Commun. 194 201
[28] Zverev P G, Basiev T T, Sobol A A 2000 Quantum Electron 30 55
计量
- 文章访问数: 6643
- PDF下载量: 172
- 被引次数: 0