-
We demonstrate an approach to create a high Q factor two-dimensional (2D) electromagnetic band gap (EBG) structure with composite defects in the center of the structures. By theoretical calculation, we show that a single-mode 2D EBG structure can be created with different ratios of diameter, d, to the lattice period, Λ, in this structure. This structure can achieve high Q factor and single mode operation with large d/Λ of the defect at the first circle around the removed rod in the center. With our structure, the single mode operation can be achieved within d/Λat the defect rods and d/Λat the others. In comparison, the condition of d/Λ should be strictly satisfied for the traditional design. These results provide very important guidelines for designing of the 2D EBG structure which can be used in traveling-wave tube device.
-
Keywords:
- electromagnetic band gap /
- composite defect /
- cavity /
- single mode PACS: 84.40.Fe
[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] John S 1987 Phys. Rev. Lett. 58 2486
[3] Sirigiri J R, Kreischer K E, Machuzak J, Mastovsky I, Shapiro M A, Temkin R J 2001 Phys. Rev. Lett. 86 5628
[4] Sirigiri J R, Shapiro M A, Temkin R J 2003 Phys. Rev. Lett. 90 258302
[5] Smirnova E I, Mastovsky I, Shapiro M A, Temkin R J, Earley L M, Edwards R L 2005 Phys. Rev. ST Accel. Beams 8 91302
[6] Choi E M, Marchewka C D, Mastovsky I, Sirigiri J R, Shapiro M A, Temkin R J 2006 Phys. of Plasm. 13 023103
[7] Smirnova E I, Carlsten B E, Earley L M 2008 IEEE International Vacuum Electronics Conference, Monterey USA, April 22—24, 2008, p85 (Piscataway : Inst. Of Elec. and Elec. Eng. Computer Society)
[8] Vela G O, Miller M S, Grow R W, Baird J M 2006 IEEE International Vacuum Electronics Conference, Monterey USA, April 25—27, 2006, p425 (Piscataway : Inst. Of Elec. and Elec. Eng. Computer Society)
[9] Jeon S, Jang Y M S, Jong K, Gun H, Park S 2005 IEEE trans. on Plasm. Sci. 33 679
[10] Jeon S G, Shin Y M, Jang K H, Han S T, So J K, Joo Y D, Park G S 2007 Appl. Phy. Lett. 90 021112
[11] Zhang R, Li H, Cao J C, Feng S L 2009 Acta Phys. Sin. 58 4618 (in Chinese) [张 戎、黎 华、曹俊诚、封松林 2009 58 4618]
[12] Wang W, Cao X Y, Wang S, Wang R, Zheng Q R 2009 Acta Phys. Sin. 58 4708(in Chinese) [王 伟、曹祥玉、王 帅、王 瑞、郑秋容 2009 58 4708]
[13] Bai N F, Liu X, Xiao J B, Zhang M D, Sun X H 2005 Acta Phys. Sin. 54 4933 (in Chinese) [柏宁丰、刘 旭、肖金标、张明德、孙小菡 2005 54 4933]
-
[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] John S 1987 Phys. Rev. Lett. 58 2486
[3] Sirigiri J R, Kreischer K E, Machuzak J, Mastovsky I, Shapiro M A, Temkin R J 2001 Phys. Rev. Lett. 86 5628
[4] Sirigiri J R, Shapiro M A, Temkin R J 2003 Phys. Rev. Lett. 90 258302
[5] Smirnova E I, Mastovsky I, Shapiro M A, Temkin R J, Earley L M, Edwards R L 2005 Phys. Rev. ST Accel. Beams 8 91302
[6] Choi E M, Marchewka C D, Mastovsky I, Sirigiri J R, Shapiro M A, Temkin R J 2006 Phys. of Plasm. 13 023103
[7] Smirnova E I, Carlsten B E, Earley L M 2008 IEEE International Vacuum Electronics Conference, Monterey USA, April 22—24, 2008, p85 (Piscataway : Inst. Of Elec. and Elec. Eng. Computer Society)
[8] Vela G O, Miller M S, Grow R W, Baird J M 2006 IEEE International Vacuum Electronics Conference, Monterey USA, April 25—27, 2006, p425 (Piscataway : Inst. Of Elec. and Elec. Eng. Computer Society)
[9] Jeon S, Jang Y M S, Jong K, Gun H, Park S 2005 IEEE trans. on Plasm. Sci. 33 679
[10] Jeon S G, Shin Y M, Jang K H, Han S T, So J K, Joo Y D, Park G S 2007 Appl. Phy. Lett. 90 021112
[11] Zhang R, Li H, Cao J C, Feng S L 2009 Acta Phys. Sin. 58 4618 (in Chinese) [张 戎、黎 华、曹俊诚、封松林 2009 58 4618]
[12] Wang W, Cao X Y, Wang S, Wang R, Zheng Q R 2009 Acta Phys. Sin. 58 4708(in Chinese) [王 伟、曹祥玉、王 帅、王 瑞、郑秋容 2009 58 4708]
[13] Bai N F, Liu X, Xiao J B, Zhang M D, Sun X H 2005 Acta Phys. Sin. 54 4933 (in Chinese) [柏宁丰、刘 旭、肖金标、张明德、孙小菡 2005 54 4933]
Catalog
Metrics
- Abstract views: 7422
- PDF Downloads: 690
- Cited By: 0