搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于飞秒激光直写的单向单模耦合微腔

魏伟华 李木天 刘墨南

引用本文:
Citation:

基于飞秒激光直写的单向单模耦合微腔

魏伟华, 李木天, 刘墨南

Coupled microcavities with unidirectional single mode via femtosecond laser direct-writing

Wei Wei-Hua, Li Mu-Tian, Liu Mo-Nan
PDF
导出引用
  • 对具有高Q值的回音壁模式微腔进行调制来获得单向单模输出,对研究腔光力学和开发高质量的微激光具有重要意义.本文对利用飞秒激光直写加工的耦合回音壁模式微腔的研究进行了简要回顾,具体介绍了微腔结构设计、加工过程、激射和耦合机制研究等.利用飞秒激光直写加工的强大三维图案化能力,灵活地设计实现了具有集成功能的单个微腔和具有不同空间组合位置的多个耦合微腔.基于耦合微腔的微激光具有低阈值,同时显示出良好的单模特性和单向性.结合理论模拟可以证实,微腔与微腔/光栅之间的耦合,一方面支持游标效应和集成滤波两种选模方式,另一方面能够破坏微腔的旋转对称性从而获得单向输出,从而实现了对微腔输出的有效调控.
    Optical microcavities play a key role in both fundamental research on light-matter interaction and also applications such as integrated optics and sensors. Among them, whisper gallery mode (WGM) microcavity outstands itself by low loss, high Q-factor and high sensitivity to their dielectric environment. It can be found to have a variety of applications, including nonlinear optics, quantum electrodynamics, bio-sensors, low-threshold lasers, etc. However, the multi-mode nature of WGM microcavity is inconsistent with the basic requirements for these applications, i.e., a single-mode output and tunable wavelength. Therefore, the modulation of whisper gallery mode towards a unidirectional single-mode output is meaningful for both studying cavity dynamics and developing the above-mentioned applications. Here in this paper a brief review is carried out on the study of coupled dye-doped polymer microcavity processed by femtosecond laser direct-writing (FSLDW). The content covers fabrication, microcavity structure design, lasing and coupling mechanism study. The powerful patterning ability of FSLDW can realize complex three-dimensional microcavity structure design, which follows two schemes. One is to integrate a filter port to a microcavity. The other is to bring two or more microcavities in close proximity to each other for coupling. Based on such schemes, three kinds of microcavity structures, which are stacked microdisks, a microdisk integrated with gratings and stacked spiral-ring and circular-ring microcavity, are developed for the mode modulation. It is shown that all the three kinds of structures support unidirectional single-mode emissions with low lasing threshold. For the case of the stacked microdisks, the coupling can have a vernier effect among their modes and hence the mode selection. For the case of the microdisk cavity integrated with gratings, the gratings work as a filter port to select a certain mode according to their own period. For the case of the stacked spiral-ring and circular-ring microcavities, it is the structure asymmetry of the former that leads to the single-mode output. The mode modulations based on the mentioned microcavity structures have successfully maintained the high Q-factor of WGMs, which makes these cavities promising unidirectional single-mode microlasers. Combining with theoretical simulations, it is confirmed that the mode coupling between the microcavities (or between gratings and a microcavity) is responsible for the mode selection. Moreover, the unique structure design can break the rotational symmetry of the microcavity and hence achieve unidirectional laser emission. By careful designing and processing, successful modulationscan be achieved on a series of polymer microcavities. With both high Q-factor and good lasing directionality, these microcavity lasers could be well explored in integrated optical systems and organic optoelectronic devices.
      通信作者: 刘墨南, graiel@jlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51501070)资助的课题.
      Corresponding author: Liu Mo-Nan, graiel@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51501070).
    [1]

    Gao M, Wei C, Lin X, Liu Y, Hu F, Zhao Y S 2017 Chem. Commun. 53 3102

    [2]

    Qiu W, Huang Y, Chen H, Qiu P, Tang Y, Wang J X, Kan Q, Pan J Q 2017 Plasmonics 12 39

    [3]

    Wang H, Liu S, Chen L, Shen D, Wu X 2016 Sci. Rep. 6 38053

    [4]

    Graf A, Held M, Zakharko Y, Tropf L, Gather M C, Zaumseil J 2017 Nat. Mater. 16 911

    [5]

    Chen W, Ozdemir S K, Zhao G, Wiersig J, Yang L 2017 Nature 548 192

    [6]

    Wang M, Lin J T, Xu Y X, Fang Z W, Qiao L L, Liu Z M, Fang W, Cheng Y 2017 Opt. Commun. 395 249

    [7]

    Gao Y P, Wang T J, Cao C, Wang C 2017 Photon. Res. 5 113

    [8]

    Pors A, Moreno E, Martin-Moreno L, Pendry J B, Garcia-Vidal F J 2012 Phys. Rev. Lett. 108 223905

    [9]

    Tomazio N B, de Boni L, Mendonca C R 2017 Sci. Rep. 7 8559

    [10]

    Kushida S, Okada D, Sasaki F, Lin Z H, Huang J S, Yamamoto Y 2017 Adv. Opt. Mater. 5 1700123

    [11]

    Yang Y D, Xiao Z X, Weng H Z, Xiao J L, Huang Y Z 2016 Proc. SPIE 10017 100170K

    [12]

    Ma X W, Huang Y Z, Yang Y D, Xiao J L, Weng H Z, Xiao Z X 2016 Appl. Phys. Lett. 109 071102

    [13]

    Heylman K D, Thakkar N, Horak E H, Quillin S C, Cherqui C, Knapper K A, Masiello D J, Goldsmith R H 2016 Nat. Photon. 10 788

    [14]

    Wang Y, Qin F, Lu J, Li J, Zhu Z, Zhu Q, Zhu Y, Shi Z, Xu C 2017 Nano Res. 10 3447

    [15]

    Shang J, Cong C, Wang Z, Peimyoo N, Wu L, Zou C, Chen Y, Chin X Y, Wang J, Soci C 2017 Nat. Commun. 8 543

    [16]

    Choi H, Heuck M, Englund D 2017 Phys. Rev. Lett. 118 223605

    [17]

    Gu F, Xie F, Lin X, Linghu S, Fang W, Zeng H, Tong L, Zhuang S 2017 Light-Sci. Appl. 6 e17061

    [18]

    Tang B, Dong H, Sun L, Zheng W, Wang Q, Sun F, Jiang X, Pan A, Zhang L 2017 ACS Nano 11 10681

    [19]

    Dusel M, Betzold S, Brodbeck S, Herbst S, Wrthner F, Friedrich D, Hecht B, Höfling S, Dietrich C P 2017 Appl. Phys. Lett. 110 201113

    [20]

    Mi Y, Zhang Z, Zhao L, Zhang S, Chen J, Ji Q, Shi J, Zhou X, Wang R, Shi J, Du W, Wu Z, Qiu X, Zhang Q, Zhang Y, Liu X 2017 Small 13 1701694

    [21]

    Shen X, Cui T J 2014 Laser Photon. Rev. 8 137

    [22]

    Jiang X F, Zou C L, Wang L, Gong Q, Xiao Y F 2016 Laser Photon. Rev. 10 40

    [23]

    Zhan X P, Xu Y X, Xu H L, Huang Q L, Hou Z S, Fang W, Chen Q D, Sun H B 2017 J. Lightwave Technol. 35 2331

    [24]

    Kim K H, Bahl G, Lee W, Liu J, Tomes M, Fan X, Carmon T 2013 Light-Sci. Appl. 2 e110

    [25]

    Park Y S, Cook A K, Wang H 2006 Nano Lett. 6 2075

    [26]

    Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E, Kimble H J 2005 Phys. Rev. A 71 013817

    [27]

    Wu Y, Yang X X 2001 J. Phys. B:At. Mol. Opt. Phys. 34 2281

    [28]

    Wu Y 2000 Phys. Rev. A 61 033803

    [29]

    Rabiei P, Steier W H, Zhang C, Dalton L R 2002 J. Lightwave Technol. 20 1968

    [30]

    Batista P D, Drescher B, Seidel W, Rudolph J, Jiao S, Santos P V 2008 Appl. Phys. Lett. 92 133502

    [31]

    Chin M K, Youtsey C, Zhao W, Pierson T, Ren Z, Wu S L, Wang L, Zhao Y G, Ho S T 1999 IEEE Photon. Technol. Lett. 11 1620

    [32]

    Krioukov E, Klunder D J W, Driessen A, Greve J, Otto C 2002 Opt. Lett. 27 512

    [33]

    Mehrabani S, Kwong P, Gupta M, Armani A M 2013 Appl. Phys. Lett. 102 241101

    [34]

    Ku J F, Chen Q D, Zhang R, Sun H B 2011 Opt. Lett. 36 2871

    [35]

    Wu Y, Leung P T 1999 Phys. Rev. A 60 630

    [36]

    Flatae A M, Burresi M, Zeng H, Nocentini S, Wiegele S, Parmeggiani C, Kalt H, Wiersma D 2015 Light-Sci. Appl. 4 e282

    [37]

    Lu S Y, Fang H H, Feng J, Xia H, Zhang T Q, Chen Q D, Sun H B 2014 J. Lightwave Technol. 32 2415

    [38]

    Gomez D E, Pastoriza-Santos I, Mulvaney P 2005 Small 1 238

    [39]

    He L, Oezdemir S K, Yang L 2013 Laser Photon. Rev. 7 60

    [40]

    Vahala K J 2003 Nature 424 839

    [41]

    Grossmann T, Wienhold T, Bog U, Beck T, Friedmann C, Kalt H, Mappes T 2013 Light-Sci. Appl. 2 e82

    [42]

    Tian Z N, Yu F, Yu Y H, Xu J J, Chen Q D, Sun H B 2017 Opt. Lett. 42 1572

    [43]

    Wang D, Chen L, Fang B, Zhu Y 2017 Plasmonics 12 947

    [44]

    Chen L, Wei Y, Zang X, Zhu Y, Zhuang S 2016 Sci. Rep. 6 22027

    [45]

    Chen L, Xu N, Singh L, Cui T, Singh R, Zhu Y, Zhang W 2017 Adv. Opt. Mater. 5 1600960

    [46]

    Matsko A B, Savchenkov A A, Strekalov D, Mohageg N, Ilchenko V S, Maleki L 2005 Resonators and Beam Control VⅢ 5708 242

    [47]

    Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L D, Hu E, Imamoglu A 2000 Science 290 2282

    [48]

    Fan X, White I M, Shopova S I, Zhu H, Suter J D, Sun Y 2008 Anal. Chim. Acta 620 8

    [49]

    Sandoghdar V V, Treussart F, Hare J, Lefèvre-Seguin V V, Raimond J, Haroche S 1996 Phys. Rev. A 54 R1777

    [50]

    Aubry G, Kou Q, Soto-Velasco J, Wang C, Meance S, He J J, Haghiri-Gosnet A M 2011 Appl. Phys. Lett. 98 111111

    [51]

    Li Z Y, Zhang Z Y, Emery T, Scherer A, Psaltis D 2006 Opt. Express 14 696

    [52]

    Gersborg-Hansen M, Kristensen A 2007 Opt. Express 15 137

    [53]

    Todescato F, Fortunati I, Gardin S, Garbin E, Collini E, Bozio R, Jasieniak J J, Della Giustina G, Brusatin G, Toffanin S, Signorini R 2012 Adv. Funct. Mater. 22 337

    [54]

    Yao W G, Guan K M, Tian Z N, Xu J J, Chen Q D, Sun H B 2016 J. Lightwave Technol. 34 4143

    [55]

    Li K H, Ma Z, Choi H W 2012 Opt. Lett. 37 374

    [56]

    Gargas D J, Moore M C, Ni A, Chang S W, Zhang Z, Chuang S L, Yang P 2010 ACS Nano 4 3270

    [57]

    Helbo B, Kristensen A, Menon A 2003 J. Micromech. Microeng. 13 0353074

    [58]

    Vezenov D V, Mayers B T, Conroy R S, Whitesides G M, Snee P T, Chan Y, Nocera D G, Bawendi M G 2005 J. Am. Chem. Soc. 127 8952

    [59]

    Galas J C, Torres J, Belotti M, Kou Q, Chen Y 2005 Appl. Phys. Lett. 86 264101

    [60]

    Li Z, Zhang Z, Scherer A, Psaltis D 2006 Opt. Express 14 10494

    [61]

    Li H, Shang L, Tu X, Liu L, Xu L 2009 J. Am. Chem. Soc. 131 16612

    [62]

    Xiao Y, Meng C, Wu X, Tong L 2011 Appl. Phys. Lett. 99 023109

    [63]

    Li H, Li J, Qiang L, Zhang Y, Hao S 2013 Nanoscale 5 6297

    [64]

    Lee W, Li H, Suter J D, Reddy K, Sun Y, Fan X 2011 Appl. Phys. Lett. 98 061103

    [65]

    Shang L, Liu L, Xu L 2008 Opt. Lett. 33 1150

    [66]

    Xiao Y, Meng C, Wang P, Ye Y, Yu H, Wang S, Gu F, Dai L, Tong L 2011 Nano Lett. 11 1122

    [67]

    Ben-Messaoud T, Zyss J 2005 Appl. Phys. Lett. 86 241110

    [68]

    Harayama T, Shinohara S 2011 Laser Photon. Rev. 5 247

    [69]

    Wiersig J, Hentschel M 2006 Phys. Rev. A 73 031802

    [70]

    Lacey S, Wang H L 2001 Opt. Lett. 26 1943

    [71]

    Gmachl C, Capasso F, Narimanov E E, Nockel J U, Stone A D, Faist J, Sivco D L, Cho A Y 1998 Science 280 1556

    [72]

    Sun H B, Tanaka T, Takada K, Kawata S 2001 Appl. Phys. Lett. 79 1411

    [73]

    Zhang Y L, Chen Q D, Xia H, Sun H B 2010 Nano Today 5 435

    [74]

    Zhang R, L C, Xiao X Z, Luo Y, He Y, Xu Y 2014 Acta Phys. Sin. 63 074205 (in Chinese) [张然, 吕超, 肖鑫泽, 骆杨, 何艳, 徐颖 2014 63 074205]

    [75]

    Zhang R, Xiao X Z, L C, Luo Y, Xu Y 2014 Acta Phys. Sin. 63 014206 (in Chinese) [张然, 肖鑫泽, 吕超, 骆杨, 徐颖 2014 63 014206]

    [76]

    Ran Z, Cao X W, Xu W W, Masanobu H, Gao B R 2014 Acta Phys. Sin. 63 054201 (in Chinese) [张然, 曹小文, 徐微微, Haraguchi Masanobu, 高炳荣 2014 63 054201]

    [77]

    Ku J F, Chen Q D, Ma X W, Yang Y D, Huang Y Z, Xu H L, Sun H B 2015 IEEE Photon. Technol. Lett. 27 1157

    [78]

    Yang S, Wang Y, Sun H 2015 Adv. Opt. Mater. 3 1136

    [79]

    Chern G D, Tureci H E, Stone A D, Chang R K, Kneissl M, Johnson N M 2003 Appl. Phys. Lett. 83 1710

  • [1]

    Gao M, Wei C, Lin X, Liu Y, Hu F, Zhao Y S 2017 Chem. Commun. 53 3102

    [2]

    Qiu W, Huang Y, Chen H, Qiu P, Tang Y, Wang J X, Kan Q, Pan J Q 2017 Plasmonics 12 39

    [3]

    Wang H, Liu S, Chen L, Shen D, Wu X 2016 Sci. Rep. 6 38053

    [4]

    Graf A, Held M, Zakharko Y, Tropf L, Gather M C, Zaumseil J 2017 Nat. Mater. 16 911

    [5]

    Chen W, Ozdemir S K, Zhao G, Wiersig J, Yang L 2017 Nature 548 192

    [6]

    Wang M, Lin J T, Xu Y X, Fang Z W, Qiao L L, Liu Z M, Fang W, Cheng Y 2017 Opt. Commun. 395 249

    [7]

    Gao Y P, Wang T J, Cao C, Wang C 2017 Photon. Res. 5 113

    [8]

    Pors A, Moreno E, Martin-Moreno L, Pendry J B, Garcia-Vidal F J 2012 Phys. Rev. Lett. 108 223905

    [9]

    Tomazio N B, de Boni L, Mendonca C R 2017 Sci. Rep. 7 8559

    [10]

    Kushida S, Okada D, Sasaki F, Lin Z H, Huang J S, Yamamoto Y 2017 Adv. Opt. Mater. 5 1700123

    [11]

    Yang Y D, Xiao Z X, Weng H Z, Xiao J L, Huang Y Z 2016 Proc. SPIE 10017 100170K

    [12]

    Ma X W, Huang Y Z, Yang Y D, Xiao J L, Weng H Z, Xiao Z X 2016 Appl. Phys. Lett. 109 071102

    [13]

    Heylman K D, Thakkar N, Horak E H, Quillin S C, Cherqui C, Knapper K A, Masiello D J, Goldsmith R H 2016 Nat. Photon. 10 788

    [14]

    Wang Y, Qin F, Lu J, Li J, Zhu Z, Zhu Q, Zhu Y, Shi Z, Xu C 2017 Nano Res. 10 3447

    [15]

    Shang J, Cong C, Wang Z, Peimyoo N, Wu L, Zou C, Chen Y, Chin X Y, Wang J, Soci C 2017 Nat. Commun. 8 543

    [16]

    Choi H, Heuck M, Englund D 2017 Phys. Rev. Lett. 118 223605

    [17]

    Gu F, Xie F, Lin X, Linghu S, Fang W, Zeng H, Tong L, Zhuang S 2017 Light-Sci. Appl. 6 e17061

    [18]

    Tang B, Dong H, Sun L, Zheng W, Wang Q, Sun F, Jiang X, Pan A, Zhang L 2017 ACS Nano 11 10681

    [19]

    Dusel M, Betzold S, Brodbeck S, Herbst S, Wrthner F, Friedrich D, Hecht B, Höfling S, Dietrich C P 2017 Appl. Phys. Lett. 110 201113

    [20]

    Mi Y, Zhang Z, Zhao L, Zhang S, Chen J, Ji Q, Shi J, Zhou X, Wang R, Shi J, Du W, Wu Z, Qiu X, Zhang Q, Zhang Y, Liu X 2017 Small 13 1701694

    [21]

    Shen X, Cui T J 2014 Laser Photon. Rev. 8 137

    [22]

    Jiang X F, Zou C L, Wang L, Gong Q, Xiao Y F 2016 Laser Photon. Rev. 10 40

    [23]

    Zhan X P, Xu Y X, Xu H L, Huang Q L, Hou Z S, Fang W, Chen Q D, Sun H B 2017 J. Lightwave Technol. 35 2331

    [24]

    Kim K H, Bahl G, Lee W, Liu J, Tomes M, Fan X, Carmon T 2013 Light-Sci. Appl. 2 e110

    [25]

    Park Y S, Cook A K, Wang H 2006 Nano Lett. 6 2075

    [26]

    Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E, Kimble H J 2005 Phys. Rev. A 71 013817

    [27]

    Wu Y, Yang X X 2001 J. Phys. B:At. Mol. Opt. Phys. 34 2281

    [28]

    Wu Y 2000 Phys. Rev. A 61 033803

    [29]

    Rabiei P, Steier W H, Zhang C, Dalton L R 2002 J. Lightwave Technol. 20 1968

    [30]

    Batista P D, Drescher B, Seidel W, Rudolph J, Jiao S, Santos P V 2008 Appl. Phys. Lett. 92 133502

    [31]

    Chin M K, Youtsey C, Zhao W, Pierson T, Ren Z, Wu S L, Wang L, Zhao Y G, Ho S T 1999 IEEE Photon. Technol. Lett. 11 1620

    [32]

    Krioukov E, Klunder D J W, Driessen A, Greve J, Otto C 2002 Opt. Lett. 27 512

    [33]

    Mehrabani S, Kwong P, Gupta M, Armani A M 2013 Appl. Phys. Lett. 102 241101

    [34]

    Ku J F, Chen Q D, Zhang R, Sun H B 2011 Opt. Lett. 36 2871

    [35]

    Wu Y, Leung P T 1999 Phys. Rev. A 60 630

    [36]

    Flatae A M, Burresi M, Zeng H, Nocentini S, Wiegele S, Parmeggiani C, Kalt H, Wiersma D 2015 Light-Sci. Appl. 4 e282

    [37]

    Lu S Y, Fang H H, Feng J, Xia H, Zhang T Q, Chen Q D, Sun H B 2014 J. Lightwave Technol. 32 2415

    [38]

    Gomez D E, Pastoriza-Santos I, Mulvaney P 2005 Small 1 238

    [39]

    He L, Oezdemir S K, Yang L 2013 Laser Photon. Rev. 7 60

    [40]

    Vahala K J 2003 Nature 424 839

    [41]

    Grossmann T, Wienhold T, Bog U, Beck T, Friedmann C, Kalt H, Mappes T 2013 Light-Sci. Appl. 2 e82

    [42]

    Tian Z N, Yu F, Yu Y H, Xu J J, Chen Q D, Sun H B 2017 Opt. Lett. 42 1572

    [43]

    Wang D, Chen L, Fang B, Zhu Y 2017 Plasmonics 12 947

    [44]

    Chen L, Wei Y, Zang X, Zhu Y, Zhuang S 2016 Sci. Rep. 6 22027

    [45]

    Chen L, Xu N, Singh L, Cui T, Singh R, Zhu Y, Zhang W 2017 Adv. Opt. Mater. 5 1600960

    [46]

    Matsko A B, Savchenkov A A, Strekalov D, Mohageg N, Ilchenko V S, Maleki L 2005 Resonators and Beam Control VⅢ 5708 242

    [47]

    Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L D, Hu E, Imamoglu A 2000 Science 290 2282

    [48]

    Fan X, White I M, Shopova S I, Zhu H, Suter J D, Sun Y 2008 Anal. Chim. Acta 620 8

    [49]

    Sandoghdar V V, Treussart F, Hare J, Lefèvre-Seguin V V, Raimond J, Haroche S 1996 Phys. Rev. A 54 R1777

    [50]

    Aubry G, Kou Q, Soto-Velasco J, Wang C, Meance S, He J J, Haghiri-Gosnet A M 2011 Appl. Phys. Lett. 98 111111

    [51]

    Li Z Y, Zhang Z Y, Emery T, Scherer A, Psaltis D 2006 Opt. Express 14 696

    [52]

    Gersborg-Hansen M, Kristensen A 2007 Opt. Express 15 137

    [53]

    Todescato F, Fortunati I, Gardin S, Garbin E, Collini E, Bozio R, Jasieniak J J, Della Giustina G, Brusatin G, Toffanin S, Signorini R 2012 Adv. Funct. Mater. 22 337

    [54]

    Yao W G, Guan K M, Tian Z N, Xu J J, Chen Q D, Sun H B 2016 J. Lightwave Technol. 34 4143

    [55]

    Li K H, Ma Z, Choi H W 2012 Opt. Lett. 37 374

    [56]

    Gargas D J, Moore M C, Ni A, Chang S W, Zhang Z, Chuang S L, Yang P 2010 ACS Nano 4 3270

    [57]

    Helbo B, Kristensen A, Menon A 2003 J. Micromech. Microeng. 13 0353074

    [58]

    Vezenov D V, Mayers B T, Conroy R S, Whitesides G M, Snee P T, Chan Y, Nocera D G, Bawendi M G 2005 J. Am. Chem. Soc. 127 8952

    [59]

    Galas J C, Torres J, Belotti M, Kou Q, Chen Y 2005 Appl. Phys. Lett. 86 264101

    [60]

    Li Z, Zhang Z, Scherer A, Psaltis D 2006 Opt. Express 14 10494

    [61]

    Li H, Shang L, Tu X, Liu L, Xu L 2009 J. Am. Chem. Soc. 131 16612

    [62]

    Xiao Y, Meng C, Wu X, Tong L 2011 Appl. Phys. Lett. 99 023109

    [63]

    Li H, Li J, Qiang L, Zhang Y, Hao S 2013 Nanoscale 5 6297

    [64]

    Lee W, Li H, Suter J D, Reddy K, Sun Y, Fan X 2011 Appl. Phys. Lett. 98 061103

    [65]

    Shang L, Liu L, Xu L 2008 Opt. Lett. 33 1150

    [66]

    Xiao Y, Meng C, Wang P, Ye Y, Yu H, Wang S, Gu F, Dai L, Tong L 2011 Nano Lett. 11 1122

    [67]

    Ben-Messaoud T, Zyss J 2005 Appl. Phys. Lett. 86 241110

    [68]

    Harayama T, Shinohara S 2011 Laser Photon. Rev. 5 247

    [69]

    Wiersig J, Hentschel M 2006 Phys. Rev. A 73 031802

    [70]

    Lacey S, Wang H L 2001 Opt. Lett. 26 1943

    [71]

    Gmachl C, Capasso F, Narimanov E E, Nockel J U, Stone A D, Faist J, Sivco D L, Cho A Y 1998 Science 280 1556

    [72]

    Sun H B, Tanaka T, Takada K, Kawata S 2001 Appl. Phys. Lett. 79 1411

    [73]

    Zhang Y L, Chen Q D, Xia H, Sun H B 2010 Nano Today 5 435

    [74]

    Zhang R, L C, Xiao X Z, Luo Y, He Y, Xu Y 2014 Acta Phys. Sin. 63 074205 (in Chinese) [张然, 吕超, 肖鑫泽, 骆杨, 何艳, 徐颖 2014 63 074205]

    [75]

    Zhang R, Xiao X Z, L C, Luo Y, Xu Y 2014 Acta Phys. Sin. 63 014206 (in Chinese) [张然, 肖鑫泽, 吕超, 骆杨, 徐颖 2014 63 014206]

    [76]

    Ran Z, Cao X W, Xu W W, Masanobu H, Gao B R 2014 Acta Phys. Sin. 63 054201 (in Chinese) [张然, 曹小文, 徐微微, Haraguchi Masanobu, 高炳荣 2014 63 054201]

    [77]

    Ku J F, Chen Q D, Ma X W, Yang Y D, Huang Y Z, Xu H L, Sun H B 2015 IEEE Photon. Technol. Lett. 27 1157

    [78]

    Yang S, Wang Y, Sun H 2015 Adv. Opt. Mater. 3 1136

    [79]

    Chern G D, Tureci H E, Stone A D, Chang R K, Kneissl M, Johnson N M 2003 Appl. Phys. Lett. 83 1710

  • [1] 郑斯文, 刘亚卓, 罗晓玲, 王丽辉, 张娜, 张晶晶, 金传洋, 徐丙立, 屈强, 陈玲. 三层芯结构在单模大模场面积低弯曲损耗光纤中的应用和分析.  , 2021, 70(22): 224214. doi: 10.7498/aps.70.20210410
    [2] 张茜, 李萌, 龚旗煌, 李焱. 飞秒激光直写光量子逻辑门.  , 2019, 68(10): 104205. doi: 10.7498/aps.68.20190024
    [3] 张浩, 郭星星, 项水英. 基于单向注入垂直腔面发射激光器系统的密钥分发.  , 2018, 67(20): 204202. doi: 10.7498/aps.67.20181038
    [4] 朱永浩, 黎华, 万文坚, 周涛, 曹俊诚. 三阶分布反馈太赫兹量子级联激光器的远场分布特性.  , 2017, 66(9): 099501. doi: 10.7498/aps.66.099501
    [5] 张良英, 金国祥, 汪志云, 曹力. 单模激光增益模型的能量随机共振.  , 2015, 64(3): 034210. doi: 10.7498/aps.64.034210
    [6] 张伟, 滕浩, 王兆华, 沈忠伟, 刘成, 魏志义. 采用环形再生腔结构的飞秒激光啁啾脉冲放大研究.  , 2013, 62(10): 104211. doi: 10.7498/aps.62.104211
    [7] 云志强, 魏汝省, 李威, 罗维维, 吴强, 徐现刚, 张心正. 6H-SiC的飞秒激光超衍射加工.  , 2013, 62(6): 068101. doi: 10.7498/aps.62.068101
    [8] 杨明, 李香莲, 吴大进. 单模激光系统随机共振的模拟研究.  , 2012, 61(16): 160502. doi: 10.7498/aps.61.160502
    [9] 张莉, 元秀华, 武力. 脉冲信号被噪声调制的单模激光随机共振.  , 2012, 61(11): 110501. doi: 10.7498/aps.61.110501
    [10] 韩海年, 张金伟, 张青, 张龙, 魏志义. 飞秒激光共振增强腔的理论与实验研究.  , 2012, 61(16): 164206. doi: 10.7498/aps.61.164206
    [11] 朱家健, 杜文博, 周朴, 许晓军, 刘泽金. 单模光纤激光极限功率的数值研究.  , 2012, 61(6): 064209. doi: 10.7498/aps.61.064209
    [12] 柏宁丰, 洪玮, 孙小菡. 复合缺陷型电磁帯隙谐振腔.  , 2011, 60(1): 018401. doi: 10.7498/aps.60.018401
    [13] 王小发, 夏光琼, 吴正茂. 光电负反馈下单向耦合注入垂直腔表面发射激光器的混沌同步特性研究.  , 2009, 58(7): 4669-4674. doi: 10.7498/aps.58.4669
    [14] 张良英, 金国祥, 曹 力. 调频信号的单模激光线性模型随机共振.  , 2008, 57(8): 4706-4711. doi: 10.7498/aps.57.4706
    [15] 金国祥, 曹 力, 张良英. 偏置调幅波调制噪声的单模激光随机共振.  , 2007, 56(7): 3739-3743. doi: 10.7498/aps.56.3739
    [16] 张良英, 曹 力, 金国祥. 色噪声驱动下调幅波的单模激光随机共振.  , 2007, 56(9): 5093-5097. doi: 10.7498/aps.56.5093
    [17] 钟东洲, 夏光琼, 王 飞, 吴正茂. 基于光反馈的单向耦合注入垂直腔表面发射激光器的矢量混沌同步特性研究.  , 2007, 56(6): 3279-3291. doi: 10.7498/aps.56.3279
    [18] 张良英, 曹 力, 金国祥. 调幅波的单模激光线性模型随机共振.  , 2006, 55(12): 6238-6242. doi: 10.7498/aps.55.6238
    [19] 徐世珍, 贾天卿, 孙海轶, 李晓溪, 程兆谷, 冯东海, 李成斌, 徐至展. 飞秒激光在石英玻璃中诱导微爆炸的理论研究.  , 2005, 54(9): 4146-4150. doi: 10.7498/aps.54.4146
    [20] 王忠纯. 介观耗散传输线的量子化.  , 2003, 52(11): 2870-2874. doi: 10.7498/aps.52.2870
计量
  • 文章访问数:  6847
  • PDF下载量:  538
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-07
  • 修回日期:  2017-11-28
  • 刊出日期:  2019-03-20

/

返回文章
返回
Baidu
map