-
对具有高Q值的回音壁模式微腔进行调制来获得单向单模输出,对研究腔光力学和开发高质量的微激光具有重要意义.本文对利用飞秒激光直写加工的耦合回音壁模式微腔的研究进行了简要回顾,具体介绍了微腔结构设计、加工过程、激射和耦合机制研究等.利用飞秒激光直写加工的强大三维图案化能力,灵活地设计实现了具有集成功能的单个微腔和具有不同空间组合位置的多个耦合微腔.基于耦合微腔的微激光具有低阈值,同时显示出良好的单模特性和单向性.结合理论模拟可以证实,微腔与微腔/光栅之间的耦合,一方面支持游标效应和集成滤波两种选模方式,另一方面能够破坏微腔的旋转对称性从而获得单向输出,从而实现了对微腔输出的有效调控.Optical microcavities play a key role in both fundamental research on light-matter interaction and also applications such as integrated optics and sensors. Among them, whisper gallery mode (WGM) microcavity outstands itself by low loss, high Q-factor and high sensitivity to their dielectric environment. It can be found to have a variety of applications, including nonlinear optics, quantum electrodynamics, bio-sensors, low-threshold lasers, etc. However, the multi-mode nature of WGM microcavity is inconsistent with the basic requirements for these applications, i.e., a single-mode output and tunable wavelength. Therefore, the modulation of whisper gallery mode towards a unidirectional single-mode output is meaningful for both studying cavity dynamics and developing the above-mentioned applications. Here in this paper a brief review is carried out on the study of coupled dye-doped polymer microcavity processed by femtosecond laser direct-writing (FSLDW). The content covers fabrication, microcavity structure design, lasing and coupling mechanism study. The powerful patterning ability of FSLDW can realize complex three-dimensional microcavity structure design, which follows two schemes. One is to integrate a filter port to a microcavity. The other is to bring two or more microcavities in close proximity to each other for coupling. Based on such schemes, three kinds of microcavity structures, which are stacked microdisks, a microdisk integrated with gratings and stacked spiral-ring and circular-ring microcavity, are developed for the mode modulation. It is shown that all the three kinds of structures support unidirectional single-mode emissions with low lasing threshold. For the case of the stacked microdisks, the coupling can have a vernier effect among their modes and hence the mode selection. For the case of the microdisk cavity integrated with gratings, the gratings work as a filter port to select a certain mode according to their own period. For the case of the stacked spiral-ring and circular-ring microcavities, it is the structure asymmetry of the former that leads to the single-mode output. The mode modulations based on the mentioned microcavity structures have successfully maintained the high Q-factor of WGMs, which makes these cavities promising unidirectional single-mode microlasers. Combining with theoretical simulations, it is confirmed that the mode coupling between the microcavities (or between gratings and a microcavity) is responsible for the mode selection. Moreover, the unique structure design can break the rotational symmetry of the microcavity and hence achieve unidirectional laser emission. By careful designing and processing, successful modulationscan be achieved on a series of polymer microcavities. With both high Q-factor and good lasing directionality, these microcavity lasers could be well explored in integrated optical systems and organic optoelectronic devices.
-
Keywords:
- coupled microcavities /
- femtosecond laser direct-writing /
- single mode /
- unidirectional lasers
[1] Gao M, Wei C, Lin X, Liu Y, Hu F, Zhao Y S 2017 Chem. Commun. 53 3102
[2] Qiu W, Huang Y, Chen H, Qiu P, Tang Y, Wang J X, Kan Q, Pan J Q 2017 Plasmonics 12 39
[3] Wang H, Liu S, Chen L, Shen D, Wu X 2016 Sci. Rep. 6 38053
[4] Graf A, Held M, Zakharko Y, Tropf L, Gather M C, Zaumseil J 2017 Nat. Mater. 16 911
[5] Chen W, Ozdemir S K, Zhao G, Wiersig J, Yang L 2017 Nature 548 192
[6] Wang M, Lin J T, Xu Y X, Fang Z W, Qiao L L, Liu Z M, Fang W, Cheng Y 2017 Opt. Commun. 395 249
[7] Gao Y P, Wang T J, Cao C, Wang C 2017 Photon. Res. 5 113
[8] Pors A, Moreno E, Martin-Moreno L, Pendry J B, Garcia-Vidal F J 2012 Phys. Rev. Lett. 108 223905
[9] Tomazio N B, de Boni L, Mendonca C R 2017 Sci. Rep. 7 8559
[10] Kushida S, Okada D, Sasaki F, Lin Z H, Huang J S, Yamamoto Y 2017 Adv. Opt. Mater. 5 1700123
[11] Yang Y D, Xiao Z X, Weng H Z, Xiao J L, Huang Y Z 2016 Proc. SPIE 10017 100170K
[12] Ma X W, Huang Y Z, Yang Y D, Xiao J L, Weng H Z, Xiao Z X 2016 Appl. Phys. Lett. 109 071102
[13] Heylman K D, Thakkar N, Horak E H, Quillin S C, Cherqui C, Knapper K A, Masiello D J, Goldsmith R H 2016 Nat. Photon. 10 788
[14] Wang Y, Qin F, Lu J, Li J, Zhu Z, Zhu Q, Zhu Y, Shi Z, Xu C 2017 Nano Res. 10 3447
[15] Shang J, Cong C, Wang Z, Peimyoo N, Wu L, Zou C, Chen Y, Chin X Y, Wang J, Soci C 2017 Nat. Commun. 8 543
[16] Choi H, Heuck M, Englund D 2017 Phys. Rev. Lett. 118 223605
[17] Gu F, Xie F, Lin X, Linghu S, Fang W, Zeng H, Tong L, Zhuang S 2017 Light-Sci. Appl. 6 e17061
[18] Tang B, Dong H, Sun L, Zheng W, Wang Q, Sun F, Jiang X, Pan A, Zhang L 2017 ACS Nano 11 10681
[19] Dusel M, Betzold S, Brodbeck S, Herbst S, Wrthner F, Friedrich D, Hecht B, Höfling S, Dietrich C P 2017 Appl. Phys. Lett. 110 201113
[20] Mi Y, Zhang Z, Zhao L, Zhang S, Chen J, Ji Q, Shi J, Zhou X, Wang R, Shi J, Du W, Wu Z, Qiu X, Zhang Q, Zhang Y, Liu X 2017 Small 13 1701694
[21] Shen X, Cui T J 2014 Laser Photon. Rev. 8 137
[22] Jiang X F, Zou C L, Wang L, Gong Q, Xiao Y F 2016 Laser Photon. Rev. 10 40
[23] Zhan X P, Xu Y X, Xu H L, Huang Q L, Hou Z S, Fang W, Chen Q D, Sun H B 2017 J. Lightwave Technol. 35 2331
[24] Kim K H, Bahl G, Lee W, Liu J, Tomes M, Fan X, Carmon T 2013 Light-Sci. Appl. 2 e110
[25] Park Y S, Cook A K, Wang H 2006 Nano Lett. 6 2075
[26] Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E, Kimble H J 2005 Phys. Rev. A 71 013817
[27] Wu Y, Yang X X 2001 J. Phys. B:At. Mol. Opt. Phys. 34 2281
[28] Wu Y 2000 Phys. Rev. A 61 033803
[29] Rabiei P, Steier W H, Zhang C, Dalton L R 2002 J. Lightwave Technol. 20 1968
[30] Batista P D, Drescher B, Seidel W, Rudolph J, Jiao S, Santos P V 2008 Appl. Phys. Lett. 92 133502
[31] Chin M K, Youtsey C, Zhao W, Pierson T, Ren Z, Wu S L, Wang L, Zhao Y G, Ho S T 1999 IEEE Photon. Technol. Lett. 11 1620
[32] Krioukov E, Klunder D J W, Driessen A, Greve J, Otto C 2002 Opt. Lett. 27 512
[33] Mehrabani S, Kwong P, Gupta M, Armani A M 2013 Appl. Phys. Lett. 102 241101
[34] Ku J F, Chen Q D, Zhang R, Sun H B 2011 Opt. Lett. 36 2871
[35] Wu Y, Leung P T 1999 Phys. Rev. A 60 630
[36] Flatae A M, Burresi M, Zeng H, Nocentini S, Wiegele S, Parmeggiani C, Kalt H, Wiersma D 2015 Light-Sci. Appl. 4 e282
[37] Lu S Y, Fang H H, Feng J, Xia H, Zhang T Q, Chen Q D, Sun H B 2014 J. Lightwave Technol. 32 2415
[38] Gomez D E, Pastoriza-Santos I, Mulvaney P 2005 Small 1 238
[39] He L, Oezdemir S K, Yang L 2013 Laser Photon. Rev. 7 60
[40] Vahala K J 2003 Nature 424 839
[41] Grossmann T, Wienhold T, Bog U, Beck T, Friedmann C, Kalt H, Mappes T 2013 Light-Sci. Appl. 2 e82
[42] Tian Z N, Yu F, Yu Y H, Xu J J, Chen Q D, Sun H B 2017 Opt. Lett. 42 1572
[43] Wang D, Chen L, Fang B, Zhu Y 2017 Plasmonics 12 947
[44] Chen L, Wei Y, Zang X, Zhu Y, Zhuang S 2016 Sci. Rep. 6 22027
[45] Chen L, Xu N, Singh L, Cui T, Singh R, Zhu Y, Zhang W 2017 Adv. Opt. Mater. 5 1600960
[46] Matsko A B, Savchenkov A A, Strekalov D, Mohageg N, Ilchenko V S, Maleki L 2005 Resonators and Beam Control VⅢ 5708 242
[47] Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L D, Hu E, Imamoglu A 2000 Science 290 2282
[48] Fan X, White I M, Shopova S I, Zhu H, Suter J D, Sun Y 2008 Anal. Chim. Acta 620 8
[49] Sandoghdar V V, Treussart F, Hare J, Lefèvre-Seguin V V, Raimond J, Haroche S 1996 Phys. Rev. A 54 R1777
[50] Aubry G, Kou Q, Soto-Velasco J, Wang C, Meance S, He J J, Haghiri-Gosnet A M 2011 Appl. Phys. Lett. 98 111111
[51] Li Z Y, Zhang Z Y, Emery T, Scherer A, Psaltis D 2006 Opt. Express 14 696
[52] Gersborg-Hansen M, Kristensen A 2007 Opt. Express 15 137
[53] Todescato F, Fortunati I, Gardin S, Garbin E, Collini E, Bozio R, Jasieniak J J, Della Giustina G, Brusatin G, Toffanin S, Signorini R 2012 Adv. Funct. Mater. 22 337
[54] Yao W G, Guan K M, Tian Z N, Xu J J, Chen Q D, Sun H B 2016 J. Lightwave Technol. 34 4143
[55] Li K H, Ma Z, Choi H W 2012 Opt. Lett. 37 374
[56] Gargas D J, Moore M C, Ni A, Chang S W, Zhang Z, Chuang S L, Yang P 2010 ACS Nano 4 3270
[57] Helbo B, Kristensen A, Menon A 2003 J. Micromech. Microeng. 13 0353074
[58] Vezenov D V, Mayers B T, Conroy R S, Whitesides G M, Snee P T, Chan Y, Nocera D G, Bawendi M G 2005 J. Am. Chem. Soc. 127 8952
[59] Galas J C, Torres J, Belotti M, Kou Q, Chen Y 2005 Appl. Phys. Lett. 86 264101
[60] Li Z, Zhang Z, Scherer A, Psaltis D 2006 Opt. Express 14 10494
[61] Li H, Shang L, Tu X, Liu L, Xu L 2009 J. Am. Chem. Soc. 131 16612
[62] Xiao Y, Meng C, Wu X, Tong L 2011 Appl. Phys. Lett. 99 023109
[63] Li H, Li J, Qiang L, Zhang Y, Hao S 2013 Nanoscale 5 6297
[64] Lee W, Li H, Suter J D, Reddy K, Sun Y, Fan X 2011 Appl. Phys. Lett. 98 061103
[65] Shang L, Liu L, Xu L 2008 Opt. Lett. 33 1150
[66] Xiao Y, Meng C, Wang P, Ye Y, Yu H, Wang S, Gu F, Dai L, Tong L 2011 Nano Lett. 11 1122
[67] Ben-Messaoud T, Zyss J 2005 Appl. Phys. Lett. 86 241110
[68] Harayama T, Shinohara S 2011 Laser Photon. Rev. 5 247
[69] Wiersig J, Hentschel M 2006 Phys. Rev. A 73 031802
[70] Lacey S, Wang H L 2001 Opt. Lett. 26 1943
[71] Gmachl C, Capasso F, Narimanov E E, Nockel J U, Stone A D, Faist J, Sivco D L, Cho A Y 1998 Science 280 1556
[72] Sun H B, Tanaka T, Takada K, Kawata S 2001 Appl. Phys. Lett. 79 1411
[73] Zhang Y L, Chen Q D, Xia H, Sun H B 2010 Nano Today 5 435
[74] Zhang R, L C, Xiao X Z, Luo Y, He Y, Xu Y 2014 Acta Phys. Sin. 63 074205 (in Chinese) [张然, 吕超, 肖鑫泽, 骆杨, 何艳, 徐颖 2014 63 074205]
[75] Zhang R, Xiao X Z, L C, Luo Y, Xu Y 2014 Acta Phys. Sin. 63 014206 (in Chinese) [张然, 肖鑫泽, 吕超, 骆杨, 徐颖 2014 63 014206]
[76] Ran Z, Cao X W, Xu W W, Masanobu H, Gao B R 2014 Acta Phys. Sin. 63 054201 (in Chinese) [张然, 曹小文, 徐微微, Haraguchi Masanobu, 高炳荣 2014 63 054201]
[77] Ku J F, Chen Q D, Ma X W, Yang Y D, Huang Y Z, Xu H L, Sun H B 2015 IEEE Photon. Technol. Lett. 27 1157
[78] Yang S, Wang Y, Sun H 2015 Adv. Opt. Mater. 3 1136
[79] Chern G D, Tureci H E, Stone A D, Chang R K, Kneissl M, Johnson N M 2003 Appl. Phys. Lett. 83 1710
-
[1] Gao M, Wei C, Lin X, Liu Y, Hu F, Zhao Y S 2017 Chem. Commun. 53 3102
[2] Qiu W, Huang Y, Chen H, Qiu P, Tang Y, Wang J X, Kan Q, Pan J Q 2017 Plasmonics 12 39
[3] Wang H, Liu S, Chen L, Shen D, Wu X 2016 Sci. Rep. 6 38053
[4] Graf A, Held M, Zakharko Y, Tropf L, Gather M C, Zaumseil J 2017 Nat. Mater. 16 911
[5] Chen W, Ozdemir S K, Zhao G, Wiersig J, Yang L 2017 Nature 548 192
[6] Wang M, Lin J T, Xu Y X, Fang Z W, Qiao L L, Liu Z M, Fang W, Cheng Y 2017 Opt. Commun. 395 249
[7] Gao Y P, Wang T J, Cao C, Wang C 2017 Photon. Res. 5 113
[8] Pors A, Moreno E, Martin-Moreno L, Pendry J B, Garcia-Vidal F J 2012 Phys. Rev. Lett. 108 223905
[9] Tomazio N B, de Boni L, Mendonca C R 2017 Sci. Rep. 7 8559
[10] Kushida S, Okada D, Sasaki F, Lin Z H, Huang J S, Yamamoto Y 2017 Adv. Opt. Mater. 5 1700123
[11] Yang Y D, Xiao Z X, Weng H Z, Xiao J L, Huang Y Z 2016 Proc. SPIE 10017 100170K
[12] Ma X W, Huang Y Z, Yang Y D, Xiao J L, Weng H Z, Xiao Z X 2016 Appl. Phys. Lett. 109 071102
[13] Heylman K D, Thakkar N, Horak E H, Quillin S C, Cherqui C, Knapper K A, Masiello D J, Goldsmith R H 2016 Nat. Photon. 10 788
[14] Wang Y, Qin F, Lu J, Li J, Zhu Z, Zhu Q, Zhu Y, Shi Z, Xu C 2017 Nano Res. 10 3447
[15] Shang J, Cong C, Wang Z, Peimyoo N, Wu L, Zou C, Chen Y, Chin X Y, Wang J, Soci C 2017 Nat. Commun. 8 543
[16] Choi H, Heuck M, Englund D 2017 Phys. Rev. Lett. 118 223605
[17] Gu F, Xie F, Lin X, Linghu S, Fang W, Zeng H, Tong L, Zhuang S 2017 Light-Sci. Appl. 6 e17061
[18] Tang B, Dong H, Sun L, Zheng W, Wang Q, Sun F, Jiang X, Pan A, Zhang L 2017 ACS Nano 11 10681
[19] Dusel M, Betzold S, Brodbeck S, Herbst S, Wrthner F, Friedrich D, Hecht B, Höfling S, Dietrich C P 2017 Appl. Phys. Lett. 110 201113
[20] Mi Y, Zhang Z, Zhao L, Zhang S, Chen J, Ji Q, Shi J, Zhou X, Wang R, Shi J, Du W, Wu Z, Qiu X, Zhang Q, Zhang Y, Liu X 2017 Small 13 1701694
[21] Shen X, Cui T J 2014 Laser Photon. Rev. 8 137
[22] Jiang X F, Zou C L, Wang L, Gong Q, Xiao Y F 2016 Laser Photon. Rev. 10 40
[23] Zhan X P, Xu Y X, Xu H L, Huang Q L, Hou Z S, Fang W, Chen Q D, Sun H B 2017 J. Lightwave Technol. 35 2331
[24] Kim K H, Bahl G, Lee W, Liu J, Tomes M, Fan X, Carmon T 2013 Light-Sci. Appl. 2 e110
[25] Park Y S, Cook A K, Wang H 2006 Nano Lett. 6 2075
[26] Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E, Kimble H J 2005 Phys. Rev. A 71 013817
[27] Wu Y, Yang X X 2001 J. Phys. B:At. Mol. Opt. Phys. 34 2281
[28] Wu Y 2000 Phys. Rev. A 61 033803
[29] Rabiei P, Steier W H, Zhang C, Dalton L R 2002 J. Lightwave Technol. 20 1968
[30] Batista P D, Drescher B, Seidel W, Rudolph J, Jiao S, Santos P V 2008 Appl. Phys. Lett. 92 133502
[31] Chin M K, Youtsey C, Zhao W, Pierson T, Ren Z, Wu S L, Wang L, Zhao Y G, Ho S T 1999 IEEE Photon. Technol. Lett. 11 1620
[32] Krioukov E, Klunder D J W, Driessen A, Greve J, Otto C 2002 Opt. Lett. 27 512
[33] Mehrabani S, Kwong P, Gupta M, Armani A M 2013 Appl. Phys. Lett. 102 241101
[34] Ku J F, Chen Q D, Zhang R, Sun H B 2011 Opt. Lett. 36 2871
[35] Wu Y, Leung P T 1999 Phys. Rev. A 60 630
[36] Flatae A M, Burresi M, Zeng H, Nocentini S, Wiegele S, Parmeggiani C, Kalt H, Wiersma D 2015 Light-Sci. Appl. 4 e282
[37] Lu S Y, Fang H H, Feng J, Xia H, Zhang T Q, Chen Q D, Sun H B 2014 J. Lightwave Technol. 32 2415
[38] Gomez D E, Pastoriza-Santos I, Mulvaney P 2005 Small 1 238
[39] He L, Oezdemir S K, Yang L 2013 Laser Photon. Rev. 7 60
[40] Vahala K J 2003 Nature 424 839
[41] Grossmann T, Wienhold T, Bog U, Beck T, Friedmann C, Kalt H, Mappes T 2013 Light-Sci. Appl. 2 e82
[42] Tian Z N, Yu F, Yu Y H, Xu J J, Chen Q D, Sun H B 2017 Opt. Lett. 42 1572
[43] Wang D, Chen L, Fang B, Zhu Y 2017 Plasmonics 12 947
[44] Chen L, Wei Y, Zang X, Zhu Y, Zhuang S 2016 Sci. Rep. 6 22027
[45] Chen L, Xu N, Singh L, Cui T, Singh R, Zhu Y, Zhang W 2017 Adv. Opt. Mater. 5 1600960
[46] Matsko A B, Savchenkov A A, Strekalov D, Mohageg N, Ilchenko V S, Maleki L 2005 Resonators and Beam Control VⅢ 5708 242
[47] Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L D, Hu E, Imamoglu A 2000 Science 290 2282
[48] Fan X, White I M, Shopova S I, Zhu H, Suter J D, Sun Y 2008 Anal. Chim. Acta 620 8
[49] Sandoghdar V V, Treussart F, Hare J, Lefèvre-Seguin V V, Raimond J, Haroche S 1996 Phys. Rev. A 54 R1777
[50] Aubry G, Kou Q, Soto-Velasco J, Wang C, Meance S, He J J, Haghiri-Gosnet A M 2011 Appl. Phys. Lett. 98 111111
[51] Li Z Y, Zhang Z Y, Emery T, Scherer A, Psaltis D 2006 Opt. Express 14 696
[52] Gersborg-Hansen M, Kristensen A 2007 Opt. Express 15 137
[53] Todescato F, Fortunati I, Gardin S, Garbin E, Collini E, Bozio R, Jasieniak J J, Della Giustina G, Brusatin G, Toffanin S, Signorini R 2012 Adv. Funct. Mater. 22 337
[54] Yao W G, Guan K M, Tian Z N, Xu J J, Chen Q D, Sun H B 2016 J. Lightwave Technol. 34 4143
[55] Li K H, Ma Z, Choi H W 2012 Opt. Lett. 37 374
[56] Gargas D J, Moore M C, Ni A, Chang S W, Zhang Z, Chuang S L, Yang P 2010 ACS Nano 4 3270
[57] Helbo B, Kristensen A, Menon A 2003 J. Micromech. Microeng. 13 0353074
[58] Vezenov D V, Mayers B T, Conroy R S, Whitesides G M, Snee P T, Chan Y, Nocera D G, Bawendi M G 2005 J. Am. Chem. Soc. 127 8952
[59] Galas J C, Torres J, Belotti M, Kou Q, Chen Y 2005 Appl. Phys. Lett. 86 264101
[60] Li Z, Zhang Z, Scherer A, Psaltis D 2006 Opt. Express 14 10494
[61] Li H, Shang L, Tu X, Liu L, Xu L 2009 J. Am. Chem. Soc. 131 16612
[62] Xiao Y, Meng C, Wu X, Tong L 2011 Appl. Phys. Lett. 99 023109
[63] Li H, Li J, Qiang L, Zhang Y, Hao S 2013 Nanoscale 5 6297
[64] Lee W, Li H, Suter J D, Reddy K, Sun Y, Fan X 2011 Appl. Phys. Lett. 98 061103
[65] Shang L, Liu L, Xu L 2008 Opt. Lett. 33 1150
[66] Xiao Y, Meng C, Wang P, Ye Y, Yu H, Wang S, Gu F, Dai L, Tong L 2011 Nano Lett. 11 1122
[67] Ben-Messaoud T, Zyss J 2005 Appl. Phys. Lett. 86 241110
[68] Harayama T, Shinohara S 2011 Laser Photon. Rev. 5 247
[69] Wiersig J, Hentschel M 2006 Phys. Rev. A 73 031802
[70] Lacey S, Wang H L 2001 Opt. Lett. 26 1943
[71] Gmachl C, Capasso F, Narimanov E E, Nockel J U, Stone A D, Faist J, Sivco D L, Cho A Y 1998 Science 280 1556
[72] Sun H B, Tanaka T, Takada K, Kawata S 2001 Appl. Phys. Lett. 79 1411
[73] Zhang Y L, Chen Q D, Xia H, Sun H B 2010 Nano Today 5 435
[74] Zhang R, L C, Xiao X Z, Luo Y, He Y, Xu Y 2014 Acta Phys. Sin. 63 074205 (in Chinese) [张然, 吕超, 肖鑫泽, 骆杨, 何艳, 徐颖 2014 63 074205]
[75] Zhang R, Xiao X Z, L C, Luo Y, Xu Y 2014 Acta Phys. Sin. 63 014206 (in Chinese) [张然, 肖鑫泽, 吕超, 骆杨, 徐颖 2014 63 014206]
[76] Ran Z, Cao X W, Xu W W, Masanobu H, Gao B R 2014 Acta Phys. Sin. 63 054201 (in Chinese) [张然, 曹小文, 徐微微, Haraguchi Masanobu, 高炳荣 2014 63 054201]
[77] Ku J F, Chen Q D, Ma X W, Yang Y D, Huang Y Z, Xu H L, Sun H B 2015 IEEE Photon. Technol. Lett. 27 1157
[78] Yang S, Wang Y, Sun H 2015 Adv. Opt. Mater. 3 1136
[79] Chern G D, Tureci H E, Stone A D, Chang R K, Kneissl M, Johnson N M 2003 Appl. Phys. Lett. 83 1710
计量
- 文章访问数: 6847
- PDF下载量: 538
- 被引次数: 0