-
In LD end-pumped solid-state laser, the crystal rod is held and cooled by the metal heat sink. The force applied to the side surface of the crystal is non-axisymmetric. Under such circumstances, three kinds of thermal contact conductance (TCC) models are established, including not using thermal interface material, using thermal interface material with its thickness equal to the average thickness of the gaps and using thermal interface material with its thickness much greater than the thickness of the gaps. Regarding to the first two models, the influences of the assembly force and the equivalent root-mean-square (RMS) roughness on thermal contact conductance are discussed based on the Truncated-Gaussian model and the plastic-deformation model. The contact heat dissipation model of the crystal rod and the heat sink is established. For the Gaussian heat consumption, the spatial distributions of temperature inside the crystal with and without thermal interface material are obtained by the finite element method. The results show that without thermal interface material, the thermal contact conductance between the crystal rod and the heat sink changes significantly in the circumferential direction, which reaches a maximum on the bottom of the heat sink groove and a minimum on the contact area of the heat sink couple. With the assembly force increasing and the equivalent root-mean-square roughness decreasing, the thermal contact conductance gets larger and more nonuniform, and the temperature of the whole crystal rod reduces. When the indium foil is used as thermal interface material, the thermal contact conductance gets larger and more uniform, the temperature of the whole crystal rod reduces as well and its distribution is axisymmetric.
-
Keywords:
- diode laser end-pumped solid-state laser /
- thermal effect /
- finite element method /
- thermal contact conductance
[1] Zhang C B, Song F, Meng F Z, Ding X, Zhang G Y, Shang M R 2002 Acta Phys. Sin. 51 1517 (in Chinese) [张潮波、宋 峰、孟凡臻、丁 欣、张光寅、商美茹 2002 51 1517]
[2] Zhang X L, Wang Y Z, Shi H F 2006 Acta Phys. Sin. 55 1787 (in Chinese) [张新陆、王月珠、史洪峰 2006 55 1787]
[3] Zhang S Y,Huang C X,Yu G L, Liu H L, Sun Y,Li J 2008 Chin. J. Lasers 35 333 (in Chinese) [张帅一、黄春霞、于果蕾、刘辉兰、孙 尧、李 健 2008 中国激光 35 333]
[4] Bo Y, Geng A C, Bi Y, Sun Z P, Yang X D, Li R N, Cui D F, Xu Z Y 2006 Acta Phys. Sin. 55 1171 (in Chinese) [薄 勇、耿爱丛、毕 勇、孙志培、杨晓东、李瑞宁、崔大复、许祖彦 2006 55 1171]
[5] Zhou C 2009 Chin. Phys. B 18 1547
[6] Zhang H L, Yan Y, Du K M 2008 Acta Phys. Sin. 57 6982 (in Chinese) [张恒利、闫 莹、杜克明 2008 57 6982]
[7] Xu F H, Wang Z P, Zhang H J, Liu X M, Xu X G, Wang J Y, Shao Z S, Jiang M H 2007 Acta Phys. Sin. 56 3950 (in Chinese) [徐方华、王正平、张怀金、刘训民、许心光、王继扬、邵宗书、蒋民华 2007 56 3950]
[8] Zhou S H, Zhao H, Tang X J 2009 Chin. J. Lasers 36 1605 (in Chinese) [周寿桓、赵 鸿、唐小军 2009 中国激光 36 1605]
[9] Grujicic M, Zhao C L, Dusel E C 2005 Appl. Surf. Sci. 246 290
[10] Bahrami M, Yovanovich M M, Culham J R 2004 J. Thermophys. Heat Tr. 18 318
[11] Bahrami M, Yovanovich M M, Culham J R 2004 J. Thermophys. Heat Tr. 18 326
[12] Bahrami M, Yovanovich M M, Culham J R 2006 Int. J. Heat Mass Tran. 49 3691
[13] Milanez F H, Yovanovich M M, Culham J R 2003 IEEE T. Compon. Pack. T. 26 48
[14] Song X L,Guo Z,Li B B, Wang S Y, Cai D F, Wen J G 2008 Chin. J. Lasers 35 1132 (in Chinese) [宋小鹿、过 振、李兵斌、王石语、蔡德芳、文建国 2008 中国激光 35 1132]
[15] Yang Y M,Xu Q M, Guo Z 2008 Acta Phys. Sin. 57 0223 (in Chinese) [杨永明、许启明、过 振 2008 57 0223]
-
[1] Zhang C B, Song F, Meng F Z, Ding X, Zhang G Y, Shang M R 2002 Acta Phys. Sin. 51 1517 (in Chinese) [张潮波、宋 峰、孟凡臻、丁 欣、张光寅、商美茹 2002 51 1517]
[2] Zhang X L, Wang Y Z, Shi H F 2006 Acta Phys. Sin. 55 1787 (in Chinese) [张新陆、王月珠、史洪峰 2006 55 1787]
[3] Zhang S Y,Huang C X,Yu G L, Liu H L, Sun Y,Li J 2008 Chin. J. Lasers 35 333 (in Chinese) [张帅一、黄春霞、于果蕾、刘辉兰、孙 尧、李 健 2008 中国激光 35 333]
[4] Bo Y, Geng A C, Bi Y, Sun Z P, Yang X D, Li R N, Cui D F, Xu Z Y 2006 Acta Phys. Sin. 55 1171 (in Chinese) [薄 勇、耿爱丛、毕 勇、孙志培、杨晓东、李瑞宁、崔大复、许祖彦 2006 55 1171]
[5] Zhou C 2009 Chin. Phys. B 18 1547
[6] Zhang H L, Yan Y, Du K M 2008 Acta Phys. Sin. 57 6982 (in Chinese) [张恒利、闫 莹、杜克明 2008 57 6982]
[7] Xu F H, Wang Z P, Zhang H J, Liu X M, Xu X G, Wang J Y, Shao Z S, Jiang M H 2007 Acta Phys. Sin. 56 3950 (in Chinese) [徐方华、王正平、张怀金、刘训民、许心光、王继扬、邵宗书、蒋民华 2007 56 3950]
[8] Zhou S H, Zhao H, Tang X J 2009 Chin. J. Lasers 36 1605 (in Chinese) [周寿桓、赵 鸿、唐小军 2009 中国激光 36 1605]
[9] Grujicic M, Zhao C L, Dusel E C 2005 Appl. Surf. Sci. 246 290
[10] Bahrami M, Yovanovich M M, Culham J R 2004 J. Thermophys. Heat Tr. 18 318
[11] Bahrami M, Yovanovich M M, Culham J R 2004 J. Thermophys. Heat Tr. 18 326
[12] Bahrami M, Yovanovich M M, Culham J R 2006 Int. J. Heat Mass Tran. 49 3691
[13] Milanez F H, Yovanovich M M, Culham J R 2003 IEEE T. Compon. Pack. T. 26 48
[14] Song X L,Guo Z,Li B B, Wang S Y, Cai D F, Wen J G 2008 Chin. J. Lasers 35 1132 (in Chinese) [宋小鹿、过 振、李兵斌、王石语、蔡德芳、文建国 2008 中国激光 35 1132]
[15] Yang Y M,Xu Q M, Guo Z 2008 Acta Phys. Sin. 57 0223 (in Chinese) [杨永明、许启明、过 振 2008 57 0223]
Catalog
Metrics
- Abstract views: 9117
- PDF Downloads: 899
- Cited By: 0