-
建立了激光二极管阵列(LDA)端面抽运棒状激光介质的数值模型.考虑到介质与空气的对流换热和介质的热力学参数随温度的变化,根据经典热传导方程和热弹性方程,运用有限元法得出了复合棒状介质和未复合棒状介质内瞬态温度、热应力和应变的时空分布,分析了温度、热应力和应变随抽运功率、换热系数和时间的变化规律.结果表明,复合棒的最高温度、最大张应力和最大轴向应变的位置与未复合棒不同,并且数值分别为未复合棒的73%,60%和33%.由此可知,利用复合棒可极大地减小热效应的影响.理论分析结果可为LDA抽运固体激光器的结构优化设计和实验研究提供理论参考.
-
关键词:
- 复合棒状激光器 /
- 激光二极管阵列端面抽运 /
- 有限元法 /
- 热效应
A numerical model of the rod laser medium pumped by laser-diode array (LDA) end is set up. Considering the influence of temperature correlation of the thermodynamic parameters of the material and heat transfer coefficient between air and medium, using the thermal conduction equations and the thermal-elastic equations, the transient distributions of temperature and thermal stress and strain in the composite rod medium and un-composite rod medium are calculated by the finite element analysis method. The effects of pump power and heat transfer coefficient and time on transient distributions of temperature and thermal stress and strain in the medium are analyzed. The results indicate that the positions of maximal temperature maximal tensile stress and maximal axial strain of the composite rod are different from those of the un-composite rod. And the maximal temperature, maximal tensile stress and maximal axial strain of the composite rod are respectively 73 per cent, 60 per cemt, and 33 per cent of the corresponding values of the un-composite rod. It is obvious that the thermal effect of the composite rod is greatly reduced. The theoretical results provide theoretical reference for the design of solid laser pumped by LDA and experimental study.-
Keywords:
- composite rod laser /
- laser-diode array end-pumping /
- finite element method /
- thermal effect
[1] He W J, Yao B Q, Wang Y Z, Ju Y L 2007 Acta Phys. Sin. 56 3240 (in Chinese) [贺万骏、姚宝权、王月珠、鞠有伦 2007 56 3240]
[2] Wu J, Summers H D 2009 Chin. Phys. B 18 4912
[3] Zheng Y, Gao M Y, Yao J Q 2003 J. Optoelectron Laser 14 1094 (in Chinese) [郑 义、高明义、姚建铨 2003光电子·激光 14 1094]
[4] Song X L, Li B B, Wang S Y, Cai D F, Wen J G, Guo Z 2007 Chin.J.Lasers 34 1476 (in Chinese) [宋小鹿、李兵斌、王石语、蔡德芳、文建国、过 振 2007 中国激光 34 1476]
[5] Masaki T, Noboru T, Tadashi K 1996 IEEE J. Sel. Top. Quantum Electron. 3 9
[6] Li M Z, Zhu Z S 2007 J. Dongguan Univ. Techn.14 33 (in Chinese) [李明真、朱占收 2007 东莞理工学院学报 14 33]
[7] Liu M Q, Li B C 2008 Acta Phys. Sin. 57 3402 (in Chinese) [刘明强、李斌成 2008 57 3402]
[8] Liu Q X, Zhong M, Jiang D, Qi W Z, Cai B W, Hao Q L, Zhao F D 2006 Laser Infrared 36 670 (in Chinese)[刘全喜、钟鸣、江 东、齐文宗、蔡邦维、郝秋龙、赵方东 2006 激光与红外 36 670]
[9] Song X L, Guo Z, Li B B, Wang S Y, Cai D F, Wen J G 2009 Acta Phys. Sin. 58 1700 (in Chinese)[宋小鹿、过 振、李兵斌、王石语、蔡德芳、文建国 2009 58 1700]
[10] Koechner W 2002 Solid-State Laser Engineering (Beijing: Science Press) p405 (in Chinese)[克希耐尔 W 2002 固体激光工程(中译本) (北京:科学出版社) 第405页]
[11] Brown D C 1998 IEEE J. Quantum Electron. 34 2383
-
[1] He W J, Yao B Q, Wang Y Z, Ju Y L 2007 Acta Phys. Sin. 56 3240 (in Chinese) [贺万骏、姚宝权、王月珠、鞠有伦 2007 56 3240]
[2] Wu J, Summers H D 2009 Chin. Phys. B 18 4912
[3] Zheng Y, Gao M Y, Yao J Q 2003 J. Optoelectron Laser 14 1094 (in Chinese) [郑 义、高明义、姚建铨 2003光电子·激光 14 1094]
[4] Song X L, Li B B, Wang S Y, Cai D F, Wen J G, Guo Z 2007 Chin.J.Lasers 34 1476 (in Chinese) [宋小鹿、李兵斌、王石语、蔡德芳、文建国、过 振 2007 中国激光 34 1476]
[5] Masaki T, Noboru T, Tadashi K 1996 IEEE J. Sel. Top. Quantum Electron. 3 9
[6] Li M Z, Zhu Z S 2007 J. Dongguan Univ. Techn.14 33 (in Chinese) [李明真、朱占收 2007 东莞理工学院学报 14 33]
[7] Liu M Q, Li B C 2008 Acta Phys. Sin. 57 3402 (in Chinese) [刘明强、李斌成 2008 57 3402]
[8] Liu Q X, Zhong M, Jiang D, Qi W Z, Cai B W, Hao Q L, Zhao F D 2006 Laser Infrared 36 670 (in Chinese)[刘全喜、钟鸣、江 东、齐文宗、蔡邦维、郝秋龙、赵方东 2006 激光与红外 36 670]
[9] Song X L, Guo Z, Li B B, Wang S Y, Cai D F, Wen J G 2009 Acta Phys. Sin. 58 1700 (in Chinese)[宋小鹿、过 振、李兵斌、王石语、蔡德芳、文建国 2009 58 1700]
[10] Koechner W 2002 Solid-State Laser Engineering (Beijing: Science Press) p405 (in Chinese)[克希耐尔 W 2002 固体激光工程(中译本) (北京:科学出版社) 第405页]
[11] Brown D C 1998 IEEE J. Quantum Electron. 34 2383
计量
- 文章访问数: 8771
- PDF下载量: 833
- 被引次数: 0