Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of direct current degradation on dielectric property of CaCu3Ti4O12 ceramic

Zhao Xue-Tong Liao Rui-Jin Li Jian-Ying Wang Fei-Peng

Citation:

Effect of direct current degradation on dielectric property of CaCu3Ti4O12 ceramic

Zhao Xue-Tong, Liao Rui-Jin, Li Jian-Ying, Wang Fei-Peng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • CaCu3Ti4O12 ceramic has drawn much attention due to its stable colossal dielectric permittivity and pronounced nonlinear electrical characteristics. In this work, the effects of direct current degradation on the dielectric response and electrical property of CaCu3Ti4O12 ceramic aged for 60 h under 3.5 kV/cm are investigated. The results of J-E characteristic analysis show that the breakdown field E1mA decreases from 216 V/mm to 144 V/mm and nonlinear coefficient η decreases from 4.1 to 2.1. The barrier heights of CaCu3Ti4O12 ceramics are calculated to be in a range of 293-368 K, based on the J-E curves, which decrease from 0.57 eV to 0.31 eV. It is found that the dielectric constant and dielectric loss at low frequencies are significantly increased. Based on Debye function, it is indicated that the dielectric loss is composed of direct current conductance loss and relaxation loss, especially the direct current conductance loss is enhanced by the direct current degradation. At 233 K, two relaxation peaks whose activation energies are 0.10 eV and 0.50 eV can be found, which are considered to be related to grain and domain boundary and not vary with direct current degradation. Electric modulus spectra are used to characterize the role of direct current degradation in the relaxation process of CaCu3Ti4O12 ceramic. The results show that the variation of interfacial space charges caused by direct current degradation obeys the Maxwell-Wagner polarization. It may be a key factor to lead to the increase of dielectric permittivity below 10 Hz, and a new corresponding relaxation peak θ can be observed in the modulus plot at low frequency. In the impedance spectra in 323-473 K, the relaxation peaks of grain boundary shift toward high frequency after direct current degradation. The results from the complex impedance plane show that the resistance of the grain boundary decreases by about two orders of magnitude and its activation energy drops off from 1.23 eV to 0.72 eV, while the resistance of grain decreases a little and its activation energy has no obvious variation. Therefore, it is proposed that direct current degradation should play an important role in grain boundary and affect its electrical property and dielectric response. An RC circuit model is proposed to elucidate the correlation between dielectric relaxation and electrical property of CaCu3Ti4O12 ceramic.
    • Funds: Project supported the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51407019), the Fundamental Research Funds for the Central Universities, China (Grant No. 106112015CDJZR155509), and the Visiting Scholarship Foundation of China (Grant No. 2007DA10512713408).
    [1]

    Yang C P, Li M Y, Song X P, Xiao H B, Xu L F 2012 Acta Phys. Sin. 61 197702 (in Chinese) [杨昌平, 李旻奕, 宋学平, 肖海波, 徐玲芳 2012 61 197702]

    [2]

    Subramanian M A, Li D, Duan N, Reisner B A, Sleight A W 2000 J. Solid State Chem. 151 323

    [3]

    Homes C C, Vogt T, Shapiro S M, Wakimoto S, Ramirez A P 2001 Science 293 673

    [4]

    He L X, Neaton J B, Cohen M H, Vanderbilt D 2002 Phys. Rev. B 65 214112

    [5]

    Cohen M H, Neaton J B, He L X, Vandebilt D 2003 J. Appl. Phys. 94 3299

    [6]

    Fang T T, Liu C P 2005 Chem. Mater. 17 5167

    [7]

    Li W, Schwartz R W 2006 Appl. Phys. Lett. 89 242906

    [8]

    Li W, Schwartz R W, Chen A P, Zhu J S 2002 Appl. Phys. Lett. 80 2153

    [9]

    Bärner K, Luo X J, Song X P, Hang C, Chen S S, Medvedeva I V, Yang C P 2011 J. Mater. Res. 26 36

    [10]

    Luo X J, Yang C P, Song X P, Xu L F 2010 Acta Phys. Sin. 59 3516 (in Chinese) [罗晓婧, 杨昌平, 宋学平, 徐玲芳 2010 59 3516]

    [11]

    Shao S F, Zhang J L, Zheng P, Zhong W L, Wang C L 2006 J. Appl. Phys. 99 084106

    [12]

    Fang T T, Shiau H K 2004 J. Am. Ceram. Soc. 87 2072

    [13]

    Chen L, Chen C L, Lin Y, Chen Y B, Chen X H, Bontchev R P, Park C Y, Jacobson A J 2003 Appl. Phys. Lett. 82 2317

    [14]

    Yang Y, Li S T, Ding C, Cheng P F 2011 Chin. Phys. B 20 025201

    [15]

    Zhao X T, Li J Y, Li H, Li S T 2012 J. Appl. Phys. 111 124106

    [16]

    Levinson L M, Philipp H R 1976 J. Appl. Phys. 47 1117

    [17]

    Clarke D R 1999 J. Am. Ceram. Soc. 82 485

    [18]

    Mukae K, Tsuda K, Nagasawa I 1977 Jpn. J. Appl. Phys. 16 1361

    [19]

    Chen J D, Liu Z Y 1982 Dielectric Physics (Beijing: Mechanical Industry Press) p151 (in Chinese) [陈季丹, 刘子玉 1982 电介质物理学 (北京: 机械工业出版社) 第151页]

    [20]

    Zhao X T, Liao R J, Liang N C, Yang L J, Li J, Li J Y 2014 J. Appl. Phys. 116 014103

    [21]

    Li J Y, Zhao X T, Li S T, Alim M A 2010 J. Appl. Phys. 108 104104

    [22]

    Roling B, Happe A, Funke K, Ingram M D 1997 Phys. Rev. Lett. 78 2160

    [23]

    Liu J J, Duan C G, Yin W G, Mei W N, Smith R W, Hardy J R 2004 Phys. Rev. B 70 144106

    [24]

    Sinclair D C, West A R 1989 J. Appl. Phys. 66 3850

    [25]

    Ishikawa H, Ohki Y 2008 IEEJ Trans. Fundam. Mater. 128 647

    [26]

    Liu L, Fan H, Wang L, Chen X, Fang P 2008 Philos. Mag. 88 537

    [27]

    Hong Y W, Kim J H 2004 Ceram. Int. 30 1307

    [28]

    Zhang J L, Zheng P, Wang C L, Zhao M L, Li J C, Wang J F 2005 Appl. Phys. Lett. 87 142901

  • [1]

    Yang C P, Li M Y, Song X P, Xiao H B, Xu L F 2012 Acta Phys. Sin. 61 197702 (in Chinese) [杨昌平, 李旻奕, 宋学平, 肖海波, 徐玲芳 2012 61 197702]

    [2]

    Subramanian M A, Li D, Duan N, Reisner B A, Sleight A W 2000 J. Solid State Chem. 151 323

    [3]

    Homes C C, Vogt T, Shapiro S M, Wakimoto S, Ramirez A P 2001 Science 293 673

    [4]

    He L X, Neaton J B, Cohen M H, Vanderbilt D 2002 Phys. Rev. B 65 214112

    [5]

    Cohen M H, Neaton J B, He L X, Vandebilt D 2003 J. Appl. Phys. 94 3299

    [6]

    Fang T T, Liu C P 2005 Chem. Mater. 17 5167

    [7]

    Li W, Schwartz R W 2006 Appl. Phys. Lett. 89 242906

    [8]

    Li W, Schwartz R W, Chen A P, Zhu J S 2002 Appl. Phys. Lett. 80 2153

    [9]

    Bärner K, Luo X J, Song X P, Hang C, Chen S S, Medvedeva I V, Yang C P 2011 J. Mater. Res. 26 36

    [10]

    Luo X J, Yang C P, Song X P, Xu L F 2010 Acta Phys. Sin. 59 3516 (in Chinese) [罗晓婧, 杨昌平, 宋学平, 徐玲芳 2010 59 3516]

    [11]

    Shao S F, Zhang J L, Zheng P, Zhong W L, Wang C L 2006 J. Appl. Phys. 99 084106

    [12]

    Fang T T, Shiau H K 2004 J. Am. Ceram. Soc. 87 2072

    [13]

    Chen L, Chen C L, Lin Y, Chen Y B, Chen X H, Bontchev R P, Park C Y, Jacobson A J 2003 Appl. Phys. Lett. 82 2317

    [14]

    Yang Y, Li S T, Ding C, Cheng P F 2011 Chin. Phys. B 20 025201

    [15]

    Zhao X T, Li J Y, Li H, Li S T 2012 J. Appl. Phys. 111 124106

    [16]

    Levinson L M, Philipp H R 1976 J. Appl. Phys. 47 1117

    [17]

    Clarke D R 1999 J. Am. Ceram. Soc. 82 485

    [18]

    Mukae K, Tsuda K, Nagasawa I 1977 Jpn. J. Appl. Phys. 16 1361

    [19]

    Chen J D, Liu Z Y 1982 Dielectric Physics (Beijing: Mechanical Industry Press) p151 (in Chinese) [陈季丹, 刘子玉 1982 电介质物理学 (北京: 机械工业出版社) 第151页]

    [20]

    Zhao X T, Liao R J, Liang N C, Yang L J, Li J, Li J Y 2014 J. Appl. Phys. 116 014103

    [21]

    Li J Y, Zhao X T, Li S T, Alim M A 2010 J. Appl. Phys. 108 104104

    [22]

    Roling B, Happe A, Funke K, Ingram M D 1997 Phys. Rev. Lett. 78 2160

    [23]

    Liu J J, Duan C G, Yin W G, Mei W N, Smith R W, Hardy J R 2004 Phys. Rev. B 70 144106

    [24]

    Sinclair D C, West A R 1989 J. Appl. Phys. 66 3850

    [25]

    Ishikawa H, Ohki Y 2008 IEEJ Trans. Fundam. Mater. 128 647

    [26]

    Liu L, Fan H, Wang L, Chen X, Fang P 2008 Philos. Mag. 88 537

    [27]

    Hong Y W, Kim J H 2004 Ceram. Int. 30 1307

    [28]

    Zhang J L, Zheng P, Wang C L, Zhao M L, Li J C, Wang J F 2005 Appl. Phys. Lett. 87 142901

  • [1] Yang Ru-Xia, Lu Yu-Ming, Zeng Li-Zhu, Zhang Lu-Jia, Li Guan-Nan. Effect of Gd doping on the structure, dielectric and multiferroic properties of 0.7BiFe0.95Ga0.05O3-0.3BaTiO3 ceramics. Acta Physica Sinica, 2020, 69(10): 107701. doi: 10.7498/aps.69.20200175
    [2] Huang Yu-Tian, Wang Yu, Zhu Min-Min, Lü Ting, Yang Hong-Chun, Li Xiang, Wang Xiu-Zhang, Liu Mei-Feng, Li Shao-Zhen. (1-x)Sr3Sn2O7+xCa3Mn2O7 ceramics and their photo-electric characteristics. Acta Physica Sinica, 2018, 67(15): 154203. doi: 10.7498/aps.67.20180954
    [3] Cheng Peng-Fei, Wang Hui, Li Sheng-Tao. Dielectric property and relaxation mechanism of CaCu3Ti4O12 ceramic. Acta Physica Sinica, 2013, 62(5): 057701. doi: 10.7498/aps.62.057701
    [4] Zhou Jing, Liu Cun-Jin, Li Ru, Chen Wen. Effects of heterogeneous interfaces on microstructure and dielectric properties of Ca(Mg1/3Nb2/3)O3/CaTiO3 multilayered thin films. Acta Physica Sinica, 2012, 61(6): 067401. doi: 10.7498/aps.61.067401
    [5] Li Zhi-Min, Shi Jian-Zhang, Wei Xiao-Hei, Li Pei-Xian, Huang Yun-Xia, Li Gui-Fang, Hao Yue. First principles calculation of electronic structure for Al-doped 3C-SiC and its microwave dielectric properties. Acta Physica Sinica, 2012, 61(23): 237103. doi: 10.7498/aps.61.237103
    [6] Yang Chang-Ping, Li Min-Yi, Song Xue-Ping, Xiao Hai-Bo, Xu Ling-Fang. Effect of oxygen content on giant dielectric constant and dielectric process in CaCu3Ti4O12. Acta Physica Sinica, 2012, 61(19): 197702. doi: 10.7498/aps.61.197702
    [7] Chen Chao, Jiang Xiang-Ping, Wei Wei, Li Xiao-Hong, Wei Hong-Bin, Song Fu-Sheng. Micro-morphology and dielectric properties for (K0.45Na0.55)NbO3 lead-free piezoelectric crystal. Acta Physica Sinica, 2011, 60(10): 107704. doi: 10.7498/aps.60.107704
    [8] Ding Nan, Tang Xin-Gui, Kuang Shu-Juan, Wu Jun-Bo, Liu Qiu-Xiang, He Qin-Yu. Effect of MnO2 additive on the piezoelectric and dielectric properties of Ba(Zr, Ti)O3 ceramics. Acta Physica Sinica, 2010, 59(9): 6613-6619. doi: 10.7498/aps.59.6613
    [9] Luo Xiao-Jing, Yang Chang-Ping, Song Xue-Ping, Xu Ling-Fang. Dielectric and impedance performances of giant dielectric constant oxide CaCu3Ti4O12. Acta Physica Sinica, 2010, 59(5): 3516-3522. doi: 10.7498/aps.59.3516
    [10] Shan Dan, Zhu Jun-Chuan, Jin Can, Chen Xiao-Bing. Effect of B-site equal-valent doping on ferroelectric properties of SrBi4Ti4O15 ceramics. Acta Physica Sinica, 2009, 58(10): 7235-7240. doi: 10.7498/aps.58.7235
    [11] Yang Yan, Li Sheng-Tao. Microstructure and DC conduction properties of CaCu3Ti4O12. Acta Physica Sinica, 2009, 58(9): 6376-6380. doi: 10.7498/aps.58.6376
    [12] Wei Yong-Xia, Qian Xiao-Mei, Yu Xiao-Zhu, Ye Chao, Ning Zhao-Yuan, Liang Rong-Qing. Effect of O2-doping on bonding configuration and electric properties of SiCOH films prepared by decamethylcyclopentasiloxane electron cyclotron resonance plasma. Acta Physica Sinica, 2007, 56(2): 1172-1176. doi: 10.7498/aps.56.1172
    [13] Zhao Su-Chuan, Li Guo-Rong, Zhang Li-Na, Wang Tian-Bao, Ding Ai-Li. Dielectric properties of Na0.25K0.25Bi0.5TiO3 lead-free ceramics. Acta Physica Sinica, 2006, 55(7): 3711-3715. doi: 10.7498/aps.55.3711
    [14] Huang Ji-Quan, Hong Lan-Xiu, Han Gao-Rong, Weng Wen-Jian, Du Pi-Yi. Dielectric properties of a three-phase Fe-Ni-BaTiO3 composite. Acta Physica Sinica, 2006, 55(7): 3664-3669. doi: 10.7498/aps.55.3664
    [15] Shao Shou-Fu, Zheng Peng, Zhang Jia-Liang, Niu Xiao-Kun, Wang Chun-Lei, Zhong Wei-Lie. Microstructures and electrical properties of CaCu3Ti4O12 ceramics. Acta Physica Sinica, 2006, 55(12): 6661-6666. doi: 10.7498/aps.55.6661
    [16] Ma Jian-Hua, Sun Jing-Lan, Meng Xiang-Jian, Lin Tie, Shi Fu-Wen, Chu Jun-Hao. Dielectric and interface characteristics of SrTiO3 with a MIS structure. Acta Physica Sinica, 2005, 54(3): 1390-1395. doi: 10.7498/aps.54.1390
    [17] Zhang Li-Na, Zhao Su-Chuan, Zheng Liao-Ying, Li Guo-Rong, Yin Qing-Rui. Microstructure, dielectric and piezoelectric properties of mixed-layered Bi7Ti4NbO21 ferroelectric ceramics. Acta Physica Sinica, 2005, 54(5): 2346-2351. doi: 10.7498/aps.54.2346
    [18] Zhao Yan-Li, Jiao Zheng-Kuan, Gao Guang-Han. High dielectric constant in CaCu3Ti4O12 bulk an d thin films. Acta Physica Sinica, 2003, 52(6): 1500-1504. doi: 10.7498/aps.52.1500
    [19] Liu Peng, Yao Xi. . Acta Physica Sinica, 2002, 51(7): 1621-1627. doi: 10.7498/aps.51.1621
    [20] Liu Peng, Bian Xiao-Bing, Zhang Liang-Ying, Yao Xi. . Acta Physica Sinica, 2002, 51(7): 1628-1633. doi: 10.7498/aps.51.1628
Metrics
  • Abstract views:  6048
  • PDF Downloads:  179
  • Cited By: 0
Publishing process
  • Received Date:  10 December 2014
  • Accepted Date:  03 February 2015
  • Published Online:  05 June 2015

/

返回文章
返回
Baidu
map