-
本文采用Novocontrol宽频介电谱仪在-100 ℃100 ℃温 度范围内、0.1 Hz10 MHz频率范围内测量了表面层打磨前 后CaCu3Ti4O12陶瓷的介电特性, 分析了CaCu3Ti4O12陶瓷的介电弛豫机理. 首先, 基于对宏观壳-心结构的定量分析, 排除了巨介电常数起源于表面层效应的可能性; 其次, 基于经典Maxwell-Wagner夹层极化及其活化能物理本质的分析, 排除了巨介电常数起源于经典Maxwell-Wagner极化的可能性; 最后, 依据晶界Schottky势垒与本征点缺陷的本质联系, 提出了巨介电常数起源于Schottky势垒边界陷阱电子弛豫的新机理. 陷阱电子弛豫机理反映了CaCu3Ti4O12陶瓷本征点缺陷、 电导、介电常数之间的本质关系.
-
关键词:
- CaCu3Ti4O12 /
- 介电弛豫 /
- Schottky势垒 /
- 点缺陷
In this paper, the dielectric property of CaCu3Ti4O12 ceramic is measured by Novocontrol wide band dielectric spectrometer in a temperature range of -100-100 ℃ and frequency range of 0.1 Hz-10 MHz, and the corresponding dielectric relaxation mechanism is discussed. Firstly, on the basis of quantitative analysis of macroscopic shell-core structure, the possibility of colossal dielectric constant (CDC) originating from the surface insulated layer effect is rejected. Secondly, after the analysis of the nature of classical Maxwell-Wagner sandwich polarization and its activation energy, classical Maxwell-Wagner mechanism is also abandoned. Finally, a new model of trapped electron relaxation at the boundary of Schottky barrier is proposed. The new mechanism correctly reflects the essential connection between intrinsic point defects, conductivity and dielectric constant of CaCu3Ti4O12material.-
Keywords:
- CaCu3Ti4O12 /
- dielectric relaxation /
- schottky barrier /
- point defects
[1] Subramanian M A, Li D, Duan N, Reisner B A, Sleight A W 2000 J. Solid State Chem. 151 323
[2] Li J, Sleight A W, Subramanian M A 2005 Solid State Comm. 135 260
[3] Sinclair D C, Adams T B, Morrison F D, West A R 2002 Appl. Phys. Lett. 80 2153
[4] Adams T B, Sinclair D C, West A R 2002 Adv. Mater. 14 321
[5] Wang C C, Zhang L W 2006 Appl. Phys. Lett. 88 042906
[6] Chen J D, Liu Z Y 1980 Dielectric Physics (Beijing: Machine Press) p178 (in Chinese) [陈季丹, 刘子玉 1980 电介质物理学 (北京: 机械工业出版社) 第178页]
[7] Luo F C, He J L, Hu J, Lin Y H 2009 J. Appl. Phys. 105 076104
[8] Li J Y, Zhao X T, Li S T, Alim M A 2010 J. Appl. Phys. 108 104104
[9] Cheng P F, Li S T, Li J Y 2012 Adv. Mater. Res. 393-395 24
[10] Cheng P F, Li S T, Li J Y 2012 Acta Phys. Sin. 61 18 (in Chinese)[成鹏飞, 李盛涛, 李建英 2012 61 18]
[11] Deng G, Yamada T, Muralt P 2007 Appl. Phys. Lett. 91 202903
[12] Yang Y, Li S T 2009 Acta Phys. Sin. 58 6376 (in Chinese) [杨雁, 李盛涛 2009 58 6376]
[13] Cheng P F, Li S T, Zhang L, Li J Y 2008 Appl. Phys. Lett. 93 012902
[14] Cheng P F, Li S T, Li J Y 2010 Acta Phys. Sin. 59 560 (in Chinese) [成鹏飞, 李盛涛, 李建英 2010 59 560]
[15] Cheng P F, Li S T, Li J Y 2009 Acta Phys. Sin. 58 5721 (in Chinese) [成鹏飞, 李盛涛, 李建英 2009 58 5721]
[16] Li M, Feterra A, Sinclair D C, West A R 2006 Appl. Phys. Lett. 88 232903
-
[1] Subramanian M A, Li D, Duan N, Reisner B A, Sleight A W 2000 J. Solid State Chem. 151 323
[2] Li J, Sleight A W, Subramanian M A 2005 Solid State Comm. 135 260
[3] Sinclair D C, Adams T B, Morrison F D, West A R 2002 Appl. Phys. Lett. 80 2153
[4] Adams T B, Sinclair D C, West A R 2002 Adv. Mater. 14 321
[5] Wang C C, Zhang L W 2006 Appl. Phys. Lett. 88 042906
[6] Chen J D, Liu Z Y 1980 Dielectric Physics (Beijing: Machine Press) p178 (in Chinese) [陈季丹, 刘子玉 1980 电介质物理学 (北京: 机械工业出版社) 第178页]
[7] Luo F C, He J L, Hu J, Lin Y H 2009 J. Appl. Phys. 105 076104
[8] Li J Y, Zhao X T, Li S T, Alim M A 2010 J. Appl. Phys. 108 104104
[9] Cheng P F, Li S T, Li J Y 2012 Adv. Mater. Res. 393-395 24
[10] Cheng P F, Li S T, Li J Y 2012 Acta Phys. Sin. 61 18 (in Chinese)[成鹏飞, 李盛涛, 李建英 2012 61 18]
[11] Deng G, Yamada T, Muralt P 2007 Appl. Phys. Lett. 91 202903
[12] Yang Y, Li S T 2009 Acta Phys. Sin. 58 6376 (in Chinese) [杨雁, 李盛涛 2009 58 6376]
[13] Cheng P F, Li S T, Zhang L, Li J Y 2008 Appl. Phys. Lett. 93 012902
[14] Cheng P F, Li S T, Li J Y 2010 Acta Phys. Sin. 59 560 (in Chinese) [成鹏飞, 李盛涛, 李建英 2010 59 560]
[15] Cheng P F, Li S T, Li J Y 2009 Acta Phys. Sin. 58 5721 (in Chinese) [成鹏飞, 李盛涛, 李建英 2009 58 5721]
[16] Li M, Feterra A, Sinclair D C, West A R 2006 Appl. Phys. Lett. 88 232903
计量
- 文章访问数: 6819
- PDF下载量: 595
- 被引次数: 0