搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CaCu3Ti4O12 陶瓷松弛损耗机理研究

王辉 林春江 李盛涛 李建英

引用本文:
Citation:

CaCu3Ti4O12 陶瓷松弛损耗机理研究

王辉, 林春江, 李盛涛, 李建英

Investigation on relaxation loss mechanism of CaCu3Ti4O12 ceramic

Wang Hui, Lin Chun-Jiang, Li Sheng-Tao, Li Jian-Ying
PDF
导出引用
  • CaCu3Ti4O12介电损耗较大且损耗机理尚不明确, 因此限制了其应用.本文采用固相法和共沉淀法合成CaCu3Ti4O12陶瓷, 利用宽带介电温谱研究在交流小信号作用下, 双Schottky势垒耗尽层边缘深陷阱的电子松弛过程、 载流子松弛过程以及CaCu3Ti4O12陶瓷的介电损耗性能. 研究发现, 在低频下以跳跃电导和直流电导的响应为主, 而高频下主要为深陷阱能级的松弛过程所致, 特别是活化能为0.12 eV的深陷阱浓度, 这是决定CaCu3Ti4O12陶瓷高频区介电损耗的重要因素.降低直流电导, 有利于降低低频区介电损耗; 而高频区介电损耗的降低, 需要降低深陷阱浓度或增大晶粒尺寸. 共沉淀法制备的CaCu3Ti4O12陶瓷, 有效降低直流电导及控制深陷阱浓度, 介电损耗降低明显.
    The dielectric loss of the CaCu3Ti4O12 ceramic is high, and the mechanism of the loss is not clear, which restricts its application. The CaCu3Ti4O12 ceramic samples are synthesised by solid state reaction method and coprecipitation method. The electronic relaxation of deep bulk traps at the depletion layer edge, carrier relaxation and the dielectric loss of CaCu3Ti4O12 ceramic are investigated. Both perfect double Schottky barrier and low impurity density can reduce the DC conductivity, thus reducing the low-frequency dielectric loss. High-frequency dielectric loss is controlled by deep bulk trap density, especially in the one whose activation energy is 0.12 eV. At room temperature, when the frequency is 1 kHz, the dielectric constant and loss of CaCu3Ti4O12 ceramic prepared by coprecipitation method are 1.4× 104 and 0.037, indicating a good improvement.
    • 基金项目: 国家自然科学基金(批准号:50972118, 50977071, 51177121)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50972118, 50977071, 51177121).
    [1]

    Subramanian M A, Li D, Duan N, Reisner B A, Sleight A W 2000 J. Solid State Chem. 151 323

    [2]

    Home C C, Vogt T, Shapiro S M, Wakimoto S, Ramirez A P 2001 Science 293 673

    [3]

    Sinclair D C, Adams T B, Morrison F D, West A R 2002 Appl. Phys. Lett. 80 2153

    [4]

    Adams T B, Sinelair D C, West A R 2002 Adv. Mater. 14 1321

    [5]

    Patterson E A, Kwon S, Huang C C, Cann D P 2005 Appl. Phys. Lett. 87 182911

    [6]

    Choi S W, Hong S H, Kim Y M 2007 J. Am. Ceram. Soc. 90 4009

    [7]

    Shao S F, Zhang J L, Zheng P, Wang C L, Li J C, Zhao M L 2007 Appl. Phys. Lett. 91 042905

    [8]

    Mu CH, Liu P, He Y, Zhou J P, Zhang H W 2009 J. Alloys Compd. 471 137

    [9]

    Guillemet F S, Lebey T, Boulos M, Durand B 2006 J. Eur. Ceram. Soc. 26 1245

    [10]

    Marchin L, Guillemet F S, Durand B 2008 Prog. Solid State Chem. 36 151

    [11]

    Cheng B, Lin Y H, Yuan J, Cai J, Nan C W, Xiao X, He J 2009 J. Appl. Phys. 106 034111

    [12]

    Marco A L C, Flavio L S, Edson R L, Alexandre J C L 2008 Appl. Phys. Lett. 93 182912

    [13]

    Adams T B, Sinclair D C, West A R 2006 Phys. Rev. B 73 094124

    [14]

    Lin Y H, Cai J, Li M, Nan C W, He J 2006 Appl. Phys. Lett. 88 172902

    [15]

    Chen K, Li G L, Gao F, Liu J, Liu J M, Zhu J S 2007 J. Appl. Phys. 101 074101

    [16]

    Deng G, Yamada T, Muralt P 2007 Appl. Phys. Lett. 91 202903

    [17]

    Li M, Feteira A, Sinclair D C, West A R 2006 Appl. Phys. Lett. 88 232903

    [18]

    Yang Y, Li S T 2010 J. Inorg. Mater. 25 835 (in Chinese) [杨雁, 李盛涛 2010无机材料学报 25 835]

    [19]

    Li J Y, Zhao X T, Li S T, Mohammad A 2010 J. Appl. Phys. 108 104104

    [20]

    Chung S, Kim I, Kang S 2004 Nat. Mater. 3 774

    [21]

    Kant C, Rudolf T, Mayr F, Krohns S, Lunkenheimer P, Ebbinghaus S G, Loidl A 2008 Phys. Rev. B 77 045131

    [22]

    He L, Neaton J B, Cohen M H, Vanderbilt D, Homes C C 2002 Phys. Rev. B 65 214112

    [23]

    He L, Neaton J B, Vanderbilt D, Cohen M H 2003 Phys. Rev. B 67 012103

    [24]

    Chen L, Wang C L 2007 J. Magn. Magn. Mater. 31 266

    [25]

    Jonscher A K 2008 Dielectric Relaxation in Solids (Xi'an:Xi'an Jiaotong University Press) p161 (in Chinese) [A. K. 琼克 2008固体中的介电弛豫(西安:西安交通大学出版社)第161页]

    [26]

    Yang Y, Li S T 2009 Acta Phys. Sin. 58 6376 (in Chinese) [杨雁, 李盛涛 2009 58 6376]

    [27]

    Jonscher A K 1975 Nature 256 566

    [28]

    Marchin L, Guillemet F S, Durand B, Levchenko A, Navrotsky A, Lebey T 2008 J. Am. Ceram. Soc. 91 485

  • [1]

    Subramanian M A, Li D, Duan N, Reisner B A, Sleight A W 2000 J. Solid State Chem. 151 323

    [2]

    Home C C, Vogt T, Shapiro S M, Wakimoto S, Ramirez A P 2001 Science 293 673

    [3]

    Sinclair D C, Adams T B, Morrison F D, West A R 2002 Appl. Phys. Lett. 80 2153

    [4]

    Adams T B, Sinelair D C, West A R 2002 Adv. Mater. 14 1321

    [5]

    Patterson E A, Kwon S, Huang C C, Cann D P 2005 Appl. Phys. Lett. 87 182911

    [6]

    Choi S W, Hong S H, Kim Y M 2007 J. Am. Ceram. Soc. 90 4009

    [7]

    Shao S F, Zhang J L, Zheng P, Wang C L, Li J C, Zhao M L 2007 Appl. Phys. Lett. 91 042905

    [8]

    Mu CH, Liu P, He Y, Zhou J P, Zhang H W 2009 J. Alloys Compd. 471 137

    [9]

    Guillemet F S, Lebey T, Boulos M, Durand B 2006 J. Eur. Ceram. Soc. 26 1245

    [10]

    Marchin L, Guillemet F S, Durand B 2008 Prog. Solid State Chem. 36 151

    [11]

    Cheng B, Lin Y H, Yuan J, Cai J, Nan C W, Xiao X, He J 2009 J. Appl. Phys. 106 034111

    [12]

    Marco A L C, Flavio L S, Edson R L, Alexandre J C L 2008 Appl. Phys. Lett. 93 182912

    [13]

    Adams T B, Sinclair D C, West A R 2006 Phys. Rev. B 73 094124

    [14]

    Lin Y H, Cai J, Li M, Nan C W, He J 2006 Appl. Phys. Lett. 88 172902

    [15]

    Chen K, Li G L, Gao F, Liu J, Liu J M, Zhu J S 2007 J. Appl. Phys. 101 074101

    [16]

    Deng G, Yamada T, Muralt P 2007 Appl. Phys. Lett. 91 202903

    [17]

    Li M, Feteira A, Sinclair D C, West A R 2006 Appl. Phys. Lett. 88 232903

    [18]

    Yang Y, Li S T 2010 J. Inorg. Mater. 25 835 (in Chinese) [杨雁, 李盛涛 2010无机材料学报 25 835]

    [19]

    Li J Y, Zhao X T, Li S T, Mohammad A 2010 J. Appl. Phys. 108 104104

    [20]

    Chung S, Kim I, Kang S 2004 Nat. Mater. 3 774

    [21]

    Kant C, Rudolf T, Mayr F, Krohns S, Lunkenheimer P, Ebbinghaus S G, Loidl A 2008 Phys. Rev. B 77 045131

    [22]

    He L, Neaton J B, Cohen M H, Vanderbilt D, Homes C C 2002 Phys. Rev. B 65 214112

    [23]

    He L, Neaton J B, Vanderbilt D, Cohen M H 2003 Phys. Rev. B 67 012103

    [24]

    Chen L, Wang C L 2007 J. Magn. Magn. Mater. 31 266

    [25]

    Jonscher A K 2008 Dielectric Relaxation in Solids (Xi'an:Xi'an Jiaotong University Press) p161 (in Chinese) [A. K. 琼克 2008固体中的介电弛豫(西安:西安交通大学出版社)第161页]

    [26]

    Yang Y, Li S T 2009 Acta Phys. Sin. 58 6376 (in Chinese) [杨雁, 李盛涛 2009 58 6376]

    [27]

    Jonscher A K 1975 Nature 256 566

    [28]

    Marchin L, Guillemet F S, Durand B, Levchenko A, Navrotsky A, Lebey T 2008 J. Am. Ceram. Soc. 91 485

  • [1] 汤卉, 牛翔, 杨志朋, 彭小草, 赵小波, 姚英邦, 陶涛, 梁波, 唐新桂, 鲁圣国. 0.7BiFeO3-0.3BaTiO3陶瓷中极化翻转产生的巨电卡效应增加及Mn4+离子掺杂对其介电、铁电性能的影响.  , 2022, 71(14): 147701. doi: 10.7498/aps.71.20220280
    [2] 赵学童, 廖瑞金, 李建英, 王飞鹏. 直流老化对CaCu3Ti4O12陶瓷介电性能的影响.  , 2015, 64(12): 127701. doi: 10.7498/aps.64.127701
    [3] 成鹏飞, 王辉, 李盛涛. CaCu3Ti4O12陶瓷的介电特性与弛豫机理.  , 2013, 62(5): 057701. doi: 10.7498/aps.62.057701
    [4] 李盛涛, 王辉, 林春江, 李建英. CaCu3Ti4O12 陶瓷介电模量响应特性的研究.  , 2013, 62(8): 087701. doi: 10.7498/aps.62.087701
    [5] 杨昌平, 李旻奕, 宋学平, 肖海波, 徐玲芳. 氧含量对CaCu3Ti4O12巨介电常数和介电过程的影响.  , 2012, 61(19): 197702. doi: 10.7498/aps.61.197702
    [6] 成鹏飞, 李盛涛, 李建英. ZnO压敏陶瓷的介电谱.  , 2012, 61(18): 187302. doi: 10.7498/aps.61.187302
    [7] 贾然, 顾访, 吴珍华, 赵学童, 李建英. 简化共沉淀法制备CaCu3Ti4O12陶瓷及其介电性能研究.  , 2012, 61(20): 207701. doi: 10.7498/aps.61.207701
    [8] 曹蕾, 刘鹏, 周剑平, 王亚娟, 苏丽娜, 刘成. CaCu3Ti4O12-MgTiO3陶瓷的介电性能与I-V非线性特征.  , 2011, 60(3): 037701. doi: 10.7498/aps.60.037701
    [9] 罗晓婧, 杨昌平, 宋学平, 徐玲芳. 巨介电常数氧化物CaCu3Ti4O12的介电和阻抗特性.  , 2010, 59(5): 3516-3522. doi: 10.7498/aps.59.3516
    [10] 成鹏飞, 李盛涛, 李建英. ZnO压敏陶瓷介电损耗的温度谱研究.  , 2009, 58(8): 5721-5725. doi: 10.7498/aps.58.5721
    [11] 杨雁, 李盛涛. CaCu3Ti4O12陶瓷的微观结构及直流导电特性.  , 2009, 58(9): 6376-6380. doi: 10.7498/aps.58.6376
    [12] 慕春红, 刘 鹏, 贺 颖, 张 丹, 孟 玲, 边小兵. Fe掺杂CaCu3Ti4O12陶瓷的介电性能与弛豫特性研究.  , 2008, 57(4): 2432-2437. doi: 10.7498/aps.57.2432
    [13] 刘 鹏, 贺 颖, 李 俊, 朱刚强, 边小兵. 添加Nb对CaCu3Ti4O12陶瓷介电性能的影响.  , 2007, 56(9): 5489-5493. doi: 10.7498/aps.56.5489
    [14] 常方高, 宋桂林, 房 坤, 王照奎. 氧含量对BiFeOδ多晶陶瓷介电特性的影响.  , 2007, 56(10): 6068-6074. doi: 10.7498/aps.56.6068
    [15] 邵守福, 郑 鹏, 张家良, 钮效鵾, 王春雷, 钟维烈. CaCu3Ti4O12陶瓷的微观结构和电学性能.  , 2006, 55(12): 6661-6666. doi: 10.7498/aps.55.6661
    [16] 周小莉, 杜丕一. 磁控溅射法制备的CaCu3Ti4O12薄膜.  , 2005, 54(4): 1809-1813. doi: 10.7498/aps.54.1809
    [17] 李书平, 王仁智. 金属-半导体超晶格中界面电荷的生成机理.  , 2004, 53(9): 2925-2930. doi: 10.7498/aps.53.2925
    [18] 胡 颖, 张存林, 沈京玲, 张希成. (100)MgO和(100)LaAlO3高温超导基片材料THz时域光谱研究.  , 2004, 53(6): 1772-1776. doi: 10.7498/aps.53.1772
    [19] 冯全源. 高取向度的毫米波锶钙六角多晶铁氧体.  , 2002, 51(11): 2612-2616. doi: 10.7498/aps.51.2612
    [20] 陈小兵, 严 峰, 李春华, 朱劲松, 沈惠敏, 王业宁. Pb(Zr0.52Ti0.48)O3陶瓷畴界粘滞运动的介电损耗模拟.  , 1999, 48(8): 1529-1534. doi: 10.7498/aps.48.1529
计量
  • 文章访问数:  7998
  • PDF下载量:  522
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-03
  • 修回日期:  2012-12-13
  • 刊出日期:  2013-04-05

/

返回文章
返回
Baidu
map