-
CaCu3Ti4O12介电损耗较大且损耗机理尚不明确, 因此限制了其应用.本文采用固相法和共沉淀法合成CaCu3Ti4O12陶瓷, 利用宽带介电温谱研究在交流小信号作用下, 双Schottky势垒耗尽层边缘深陷阱的电子松弛过程、 载流子松弛过程以及CaCu3Ti4O12陶瓷的介电损耗性能. 研究发现, 在低频下以跳跃电导和直流电导的响应为主, 而高频下主要为深陷阱能级的松弛过程所致, 特别是活化能为0.12 eV的深陷阱浓度, 这是决定CaCu3Ti4O12陶瓷高频区介电损耗的重要因素.降低直流电导, 有利于降低低频区介电损耗; 而高频区介电损耗的降低, 需要降低深陷阱浓度或增大晶粒尺寸. 共沉淀法制备的CaCu3Ti4O12陶瓷, 有效降低直流电导及控制深陷阱浓度, 介电损耗降低明显.
-
关键词:
- CaCu3Ti4O12陶瓷 /
- 介电损耗 /
- 松弛过程 /
- Schottky势垒
The dielectric loss of the CaCu3Ti4O12 ceramic is high, and the mechanism of the loss is not clear, which restricts its application. The CaCu3Ti4O12 ceramic samples are synthesised by solid state reaction method and coprecipitation method. The electronic relaxation of deep bulk traps at the depletion layer edge, carrier relaxation and the dielectric loss of CaCu3Ti4O12 ceramic are investigated. Both perfect double Schottky barrier and low impurity density can reduce the DC conductivity, thus reducing the low-frequency dielectric loss. High-frequency dielectric loss is controlled by deep bulk trap density, especially in the one whose activation energy is 0.12 eV. At room temperature, when the frequency is 1 kHz, the dielectric constant and loss of CaCu3Ti4O12 ceramic prepared by coprecipitation method are 1.4× 104 and 0.037, indicating a good improvement.-
Keywords:
- CaCu3Ti4O12 ceramics /
- dielectric loss /
- relaxation process /
- Schottky barrier
[1] Subramanian M A, Li D, Duan N, Reisner B A, Sleight A W 2000 J. Solid State Chem. 151 323
[2] Home C C, Vogt T, Shapiro S M, Wakimoto S, Ramirez A P 2001 Science 293 673
[3] Sinclair D C, Adams T B, Morrison F D, West A R 2002 Appl. Phys. Lett. 80 2153
[4] Adams T B, Sinelair D C, West A R 2002 Adv. Mater. 14 1321
[5] Patterson E A, Kwon S, Huang C C, Cann D P 2005 Appl. Phys. Lett. 87 182911
[6] Choi S W, Hong S H, Kim Y M 2007 J. Am. Ceram. Soc. 90 4009
[7] Shao S F, Zhang J L, Zheng P, Wang C L, Li J C, Zhao M L 2007 Appl. Phys. Lett. 91 042905
[8] Mu CH, Liu P, He Y, Zhou J P, Zhang H W 2009 J. Alloys Compd. 471 137
[9] Guillemet F S, Lebey T, Boulos M, Durand B 2006 J. Eur. Ceram. Soc. 26 1245
[10] Marchin L, Guillemet F S, Durand B 2008 Prog. Solid State Chem. 36 151
[11] Cheng B, Lin Y H, Yuan J, Cai J, Nan C W, Xiao X, He J 2009 J. Appl. Phys. 106 034111
[12] Marco A L C, Flavio L S, Edson R L, Alexandre J C L 2008 Appl. Phys. Lett. 93 182912
[13] Adams T B, Sinclair D C, West A R 2006 Phys. Rev. B 73 094124
[14] Lin Y H, Cai J, Li M, Nan C W, He J 2006 Appl. Phys. Lett. 88 172902
[15] Chen K, Li G L, Gao F, Liu J, Liu J M, Zhu J S 2007 J. Appl. Phys. 101 074101
[16] Deng G, Yamada T, Muralt P 2007 Appl. Phys. Lett. 91 202903
[17] Li M, Feteira A, Sinclair D C, West A R 2006 Appl. Phys. Lett. 88 232903
[18] Yang Y, Li S T 2010 J. Inorg. Mater. 25 835 (in Chinese) [杨雁, 李盛涛 2010无机材料学报 25 835]
[19] Li J Y, Zhao X T, Li S T, Mohammad A 2010 J. Appl. Phys. 108 104104
[20] Chung S, Kim I, Kang S 2004 Nat. Mater. 3 774
[21] Kant C, Rudolf T, Mayr F, Krohns S, Lunkenheimer P, Ebbinghaus S G, Loidl A 2008 Phys. Rev. B 77 045131
[22] He L, Neaton J B, Cohen M H, Vanderbilt D, Homes C C 2002 Phys. Rev. B 65 214112
[23] He L, Neaton J B, Vanderbilt D, Cohen M H 2003 Phys. Rev. B 67 012103
[24] Chen L, Wang C L 2007 J. Magn. Magn. Mater. 31 266
[25] Jonscher A K 2008 Dielectric Relaxation in Solids (Xi'an:Xi'an Jiaotong University Press) p161 (in Chinese) [A. K. 琼克 2008固体中的介电弛豫(西安:西安交通大学出版社)第161页]
[26] Yang Y, Li S T 2009 Acta Phys. Sin. 58 6376 (in Chinese) [杨雁, 李盛涛 2009 58 6376]
[27] Jonscher A K 1975 Nature 256 566
[28] Marchin L, Guillemet F S, Durand B, Levchenko A, Navrotsky A, Lebey T 2008 J. Am. Ceram. Soc. 91 485
-
[1] Subramanian M A, Li D, Duan N, Reisner B A, Sleight A W 2000 J. Solid State Chem. 151 323
[2] Home C C, Vogt T, Shapiro S M, Wakimoto S, Ramirez A P 2001 Science 293 673
[3] Sinclair D C, Adams T B, Morrison F D, West A R 2002 Appl. Phys. Lett. 80 2153
[4] Adams T B, Sinelair D C, West A R 2002 Adv. Mater. 14 1321
[5] Patterson E A, Kwon S, Huang C C, Cann D P 2005 Appl. Phys. Lett. 87 182911
[6] Choi S W, Hong S H, Kim Y M 2007 J. Am. Ceram. Soc. 90 4009
[7] Shao S F, Zhang J L, Zheng P, Wang C L, Li J C, Zhao M L 2007 Appl. Phys. Lett. 91 042905
[8] Mu CH, Liu P, He Y, Zhou J P, Zhang H W 2009 J. Alloys Compd. 471 137
[9] Guillemet F S, Lebey T, Boulos M, Durand B 2006 J. Eur. Ceram. Soc. 26 1245
[10] Marchin L, Guillemet F S, Durand B 2008 Prog. Solid State Chem. 36 151
[11] Cheng B, Lin Y H, Yuan J, Cai J, Nan C W, Xiao X, He J 2009 J. Appl. Phys. 106 034111
[12] Marco A L C, Flavio L S, Edson R L, Alexandre J C L 2008 Appl. Phys. Lett. 93 182912
[13] Adams T B, Sinclair D C, West A R 2006 Phys. Rev. B 73 094124
[14] Lin Y H, Cai J, Li M, Nan C W, He J 2006 Appl. Phys. Lett. 88 172902
[15] Chen K, Li G L, Gao F, Liu J, Liu J M, Zhu J S 2007 J. Appl. Phys. 101 074101
[16] Deng G, Yamada T, Muralt P 2007 Appl. Phys. Lett. 91 202903
[17] Li M, Feteira A, Sinclair D C, West A R 2006 Appl. Phys. Lett. 88 232903
[18] Yang Y, Li S T 2010 J. Inorg. Mater. 25 835 (in Chinese) [杨雁, 李盛涛 2010无机材料学报 25 835]
[19] Li J Y, Zhao X T, Li S T, Mohammad A 2010 J. Appl. Phys. 108 104104
[20] Chung S, Kim I, Kang S 2004 Nat. Mater. 3 774
[21] Kant C, Rudolf T, Mayr F, Krohns S, Lunkenheimer P, Ebbinghaus S G, Loidl A 2008 Phys. Rev. B 77 045131
[22] He L, Neaton J B, Cohen M H, Vanderbilt D, Homes C C 2002 Phys. Rev. B 65 214112
[23] He L, Neaton J B, Vanderbilt D, Cohen M H 2003 Phys. Rev. B 67 012103
[24] Chen L, Wang C L 2007 J. Magn. Magn. Mater. 31 266
[25] Jonscher A K 2008 Dielectric Relaxation in Solids (Xi'an:Xi'an Jiaotong University Press) p161 (in Chinese) [A. K. 琼克 2008固体中的介电弛豫(西安:西安交通大学出版社)第161页]
[26] Yang Y, Li S T 2009 Acta Phys. Sin. 58 6376 (in Chinese) [杨雁, 李盛涛 2009 58 6376]
[27] Jonscher A K 1975 Nature 256 566
[28] Marchin L, Guillemet F S, Durand B, Levchenko A, Navrotsky A, Lebey T 2008 J. Am. Ceram. Soc. 91 485
计量
- 文章访问数: 7998
- PDF下载量: 522
- 被引次数: 0