搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CaCu3Ti4O12-MgTiO3陶瓷的介电性能与I-V非线性特征

曹蕾 刘鹏 周剑平 王亚娟 苏丽娜 刘成

引用本文:
Citation:

CaCu3Ti4O12-MgTiO3陶瓷的介电性能与I-V非线性特征

曹蕾, 刘鹏, 周剑平, 王亚娟, 苏丽娜, 刘成

Dielectric properties and nonlinear current-voltage behavior of MgTiO3-doped CaCu3Ti4O12 ceramics

Cao Lei, Liu Peng, Zhou Jian-Ping, Wang Ya-Juan, Su Li-Na, Liu Cheng
PDF
导出引用
  • 采用固相反应法制备了一系列CaCu3Ti4O12-xMgTiO3(x = 0, 0.25, 0.5, 1.0)复相陶瓷,研究了MgTiO3掺杂对CaCu3Ti4O12(CCTO)陶瓷相结构、显微组织、介电性能和I-V非线性特征的影响.研究发现:MgTiO3掺杂不仅使CC
    The CaCu3Ti4O12-xMgTiO3(x= 0, 0.25, 0.5, 1.0) ceramics have been prepared by a solid-state reaction method. The effects of MgTiO3 doping on the phase structure, microstructure and dielectric properties of CaCu3Ti4O12 ceramics have been investigated. The results indicate that MgTiO3 doping not only reduced the dielectric loss of low frequency range and raised the breakdown voltage but also significantly improved the I-V nonlinearity coefficient. The optimized properties of MgTiO3 doped CaCu3Ti4O12 can be well explained by the uniformity of the grains, the reduction of the average grain boundary thinkness and the enhancement of the grain boundary resistance. Among the CaCu3Ti4O12-MgTiO3 specimens in this work, the CaCu3Ti4O12-0.5MgTiO3 specimen has achieved the best comprehensive properties, which include a dielectric constant (εr) of 53958, dielectric loss (tanδ) of 0.06 at 1 kHz, breakdown voltage (Eb) of 295 V/mm and a large nonlinearity coefficient of 66.3.
    • 基金项目: 国家自然科学基金(批准号:50872078和50772065)资助的课题.
    [1]

    Homes C C, Vogt T, Shapiro S M, Wakimoto S, Ramirez A P 2001 Science 293 673

    [2]

    Subramanian M A, Li D, Duan N, Reisner B A, Sleight A W 2000 J. Solid State Chem. 151 323

    [3]

    Ramirez A P, Subramanian M A, Gardel M, Blumberg G, Li D, Vogt T, Shapiro S M 2000 Solid State Commun. 115 217

    [4]

    Chung S Y, Kim I D, Kang S J L 2004 Nature Mater. 3 774

    [5]

    Zhao Y L, Jiao Z K, Cao G H 2003 Acta Phys. Sin. 52 1500 (in Chinese) [赵彦立、焦正宽、曹光旱 2003 52 1500]

    [6]

    Zhou X L, Du P Y 2005 Acta Phys. Sin. 54 354 (in Chinese) [周小莉、杜丕一 2005 54 354]

    [7]

    Shao S F, Zheng P, Zhang J L, Niu X K, Wang C L, Zhong W L 2006 Acta Phys. Sin. 55 6661 (in Chinese) [邵守福、郑 鹏、张家良、钮效鹍、王春雷、钟维烈 2006 55 6661]

    [8]

    Marques V P B, Ries A, Sim es A Z, Ramírez M A, Varela J A, Longo E 2007 Ceramics International 33 1187

    [9]

    Singh D P, Mohapatra Y N, Agrawal D C Mater. 2009 Mater. Sci. Eng. B 157 58

    [10]

    Fang L, Shen M R, Li Z Y 2006 J. Appl. Phys. 100 104101

    [11]

    Li T, Chen Z P, Chang F G, Hao J H, Zhang J C 2009 J. Alloy Compd. 484 718

    [12]

    Lin Y H, Cai J N, Li M, Nan C W 2006 Appl. Phys. Lett. 88 172902

    [13]

    Luo F C, He J L, Hu J, Lin Y H 2009 J. Appl. Phys. 105 076104

    [14]

    Cai J N, Lin Y H, Cheng B, Nan C W, He J L, Wu Y J, Chen X M 2007 Appl. Phys. Lett. 91 252905

    [15]

    Xue H, Guan X F, Yu R, Xiong Z X 2009 J. Alloy Compd. 482 L14

    [16]

    Chung S Y, Lee S I, Choi J H, Chio S Y 2006 Appl. Phys. Lett. 89 191907

    [17]

    Chung S Y, Choi S Y, Yamamoto T, Ikuhara Y, Kang S J L 2006 Appl. Phys. Lett. 88 091917

    [18]

    Leret P, Fernandez J F, Frutos J D, Hevia D F 2007 J. Eur. Ceram. Soc. 27 3901

    [19]

    Clarke D R 1999 J. Am. Ceram. Soc. 82 485

    [20]

    Ji S D, Fan F K 1997 J. Ceram. 18 52 (in Chinese) [纪士东、范福康 1997 陶瓷学报 18 52]

    [21]

    Liu P, He Y, Li J, Zhu G Q, Bian X B 2007 Acta Phys. Sin. 56 5489 (in Chinese) [刘 鹏、贺 颖、李 俊、朱刚强、边小兵 2007 56 5489]

    [22]

    Mu C H, Liu P, He Y, Zhang D, Meng L, Bian X B 2008 Acta Phys. Sin. 57 2432 (in Chinese) [慕春红、刘 鹏、贺 颖、张 丹、孟 玲、边小兵 2008 57 2432]

    [23]

    Shannon R D 1976 Acta Cryst. A 32 751

    [24]

    Wang J F, Luo J H 2007 B. Chinese Ceram. Soc. 26 514 (in Chinese) [王加芳、罗驹华 2007 硅酸盐通报 26 514]

    [25]

    Fang T T, Mei L T 2007 J. Am. Ceram. Soc. 90 638

    [26]

    Prakash B S, Varma K B R 2007 J. Phys. Chem. Solids 68 490

    [27]

    New Inorganic Material Teaching and Research Group of Shanghai Science and Technology University 1977 The Electronic Ceramics Processing Basics (Shanghai: Shanghai People Press) p111 (in Chinese) [上海科技大学新型无机材料教研组 1977 电子陶瓷工艺基础 (上海:上海人民出版社) 第111页]

    [28]

    Yan Y Y, Jin L, Feng L X, Cao G H 2006 Sci. Eng. B 130 146

  • [1]

    Homes C C, Vogt T, Shapiro S M, Wakimoto S, Ramirez A P 2001 Science 293 673

    [2]

    Subramanian M A, Li D, Duan N, Reisner B A, Sleight A W 2000 J. Solid State Chem. 151 323

    [3]

    Ramirez A P, Subramanian M A, Gardel M, Blumberg G, Li D, Vogt T, Shapiro S M 2000 Solid State Commun. 115 217

    [4]

    Chung S Y, Kim I D, Kang S J L 2004 Nature Mater. 3 774

    [5]

    Zhao Y L, Jiao Z K, Cao G H 2003 Acta Phys. Sin. 52 1500 (in Chinese) [赵彦立、焦正宽、曹光旱 2003 52 1500]

    [6]

    Zhou X L, Du P Y 2005 Acta Phys. Sin. 54 354 (in Chinese) [周小莉、杜丕一 2005 54 354]

    [7]

    Shao S F, Zheng P, Zhang J L, Niu X K, Wang C L, Zhong W L 2006 Acta Phys. Sin. 55 6661 (in Chinese) [邵守福、郑 鹏、张家良、钮效鹍、王春雷、钟维烈 2006 55 6661]

    [8]

    Marques V P B, Ries A, Sim es A Z, Ramírez M A, Varela J A, Longo E 2007 Ceramics International 33 1187

    [9]

    Singh D P, Mohapatra Y N, Agrawal D C Mater. 2009 Mater. Sci. Eng. B 157 58

    [10]

    Fang L, Shen M R, Li Z Y 2006 J. Appl. Phys. 100 104101

    [11]

    Li T, Chen Z P, Chang F G, Hao J H, Zhang J C 2009 J. Alloy Compd. 484 718

    [12]

    Lin Y H, Cai J N, Li M, Nan C W 2006 Appl. Phys. Lett. 88 172902

    [13]

    Luo F C, He J L, Hu J, Lin Y H 2009 J. Appl. Phys. 105 076104

    [14]

    Cai J N, Lin Y H, Cheng B, Nan C W, He J L, Wu Y J, Chen X M 2007 Appl. Phys. Lett. 91 252905

    [15]

    Xue H, Guan X F, Yu R, Xiong Z X 2009 J. Alloy Compd. 482 L14

    [16]

    Chung S Y, Lee S I, Choi J H, Chio S Y 2006 Appl. Phys. Lett. 89 191907

    [17]

    Chung S Y, Choi S Y, Yamamoto T, Ikuhara Y, Kang S J L 2006 Appl. Phys. Lett. 88 091917

    [18]

    Leret P, Fernandez J F, Frutos J D, Hevia D F 2007 J. Eur. Ceram. Soc. 27 3901

    [19]

    Clarke D R 1999 J. Am. Ceram. Soc. 82 485

    [20]

    Ji S D, Fan F K 1997 J. Ceram. 18 52 (in Chinese) [纪士东、范福康 1997 陶瓷学报 18 52]

    [21]

    Liu P, He Y, Li J, Zhu G Q, Bian X B 2007 Acta Phys. Sin. 56 5489 (in Chinese) [刘 鹏、贺 颖、李 俊、朱刚强、边小兵 2007 56 5489]

    [22]

    Mu C H, Liu P, He Y, Zhang D, Meng L, Bian X B 2008 Acta Phys. Sin. 57 2432 (in Chinese) [慕春红、刘 鹏、贺 颖、张 丹、孟 玲、边小兵 2008 57 2432]

    [23]

    Shannon R D 1976 Acta Cryst. A 32 751

    [24]

    Wang J F, Luo J H 2007 B. Chinese Ceram. Soc. 26 514 (in Chinese) [王加芳、罗驹华 2007 硅酸盐通报 26 514]

    [25]

    Fang T T, Mei L T 2007 J. Am. Ceram. Soc. 90 638

    [26]

    Prakash B S, Varma K B R 2007 J. Phys. Chem. Solids 68 490

    [27]

    New Inorganic Material Teaching and Research Group of Shanghai Science and Technology University 1977 The Electronic Ceramics Processing Basics (Shanghai: Shanghai People Press) p111 (in Chinese) [上海科技大学新型无机材料教研组 1977 电子陶瓷工艺基础 (上海:上海人民出版社) 第111页]

    [28]

    Yan Y Y, Jin L, Feng L X, Cao G H 2006 Sci. Eng. B 130 146

  • [1] 李诗嘉, 王振兴, 牛焱, 王彬, 桑胜波, 张文栋, 高杨, 冀健龙. pH敏感有机电化学晶体管I-V特性及其电压依赖性.  , 2022, 71(13): 138501. doi: 10.7498/aps.71.20220241
    [2] 郭绮琪, 陈溢杭. 基于介电常数近零模式与间隙表面等离激元强耦合的增强非线性光学效应.  , 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [3] 成鹏飞, 李盛涛, 李建英. ZnO压敏陶瓷的介电谱.  , 2012, 61(18): 187302. doi: 10.7498/aps.61.187302
    [4] 贾然, 顾访, 吴珍华, 赵学童, 李建英. 简化共沉淀法制备CaCu3Ti4O12陶瓷及其介电性能研究.  , 2012, 61(20): 207701. doi: 10.7498/aps.61.207701
    [5] 赵学童, 李建英, 李欢, 李盛涛. ZnO压敏陶瓷缺陷结构表征及冲击老化机理研究.  , 2012, 61(15): 153103. doi: 10.7498/aps.61.153103
    [6] 杨昌平, 李旻奕, 宋学平, 肖海波, 徐玲芳. 氧含量对CaCu3Ti4O12巨介电常数和介电过程的影响.  , 2012, 61(19): 197702. doi: 10.7498/aps.61.197702
    [7] 邓恒, 杨昌平, 黄昌, 徐玲芳. 双层钙钛矿La1.8Ca1.2Mn2O7磁性相关I-V非线性与电输运性质.  , 2010, 59(10): 7390-7395. doi: 10.7498/aps.59.7390
    [8] 罗晓婧, 杨昌平, 宋学平, 徐玲芳. 巨介电常数氧化物CaCu3Ti4O12的介电和阻抗特性.  , 2010, 59(5): 3516-3522. doi: 10.7498/aps.59.3516
    [9] 尹桂来, 李建英, 尧广, 成鹏飞, 李盛涛. ZnO压敏陶瓷冲击老化的电子陷阱过程研究.  , 2010, 59(9): 6345-6350. doi: 10.7498/aps.59.6345
    [10] 慕春红, 刘 鹏, 贺 颖, 张 丹, 孟 玲, 边小兵. Fe掺杂CaCu3Ti4O12陶瓷的介电性能与弛豫特性研究.  , 2008, 57(4): 2432-2437. doi: 10.7498/aps.57.2432
    [11] 刘 鹏, 贺 颖, 李 俊, 朱刚强, 边小兵. 添加Nb对CaCu3Ti4O12陶瓷介电性能的影响.  , 2007, 56(9): 5489-5493. doi: 10.7498/aps.56.5489
    [12] 杨学文, 郑家贵, 张静全, 冯良桓, 蔡 伟, 蔡亚平, 李 卫, 黎 兵, 雷 智, 武莉莉. CdTe/CdS太阳电池I-V,C-V特性研究.  , 2006, 55(5): 2504-2507. doi: 10.7498/aps.55.2504
    [13] 梁瑞虹, 董显林, 陈 莹, 曹 菲, 王永龄. 直流偏置电场下BaTiO3基陶瓷介电常数非线性机理的研究.  , 2005, 54(10): 4914-4919. doi: 10.7498/aps.54.4914
    [14] 沈 韩, 许 华, 陈 敏, 李景德. 超高介电常数非铁电单晶.  , 2004, 53(5): 1529-1533. doi: 10.7498/aps.53.1529
    [15] 柳学榕, 胡泊, 刘文汉, 高琛. 扫描近场微波显微镜测量非线性介电常数的理论校准系数.  , 2003, 52(1): 34-38. doi: 10.7498/aps.52.34
    [16] 赵彦立, 焦正宽, 曹光旱. CaCu3Ti4O12块材和薄膜的巨介电常数.  , 2003, 52(6): 1500-1504. doi: 10.7498/aps.52.1500
    [17] 刘曾荣, 江霞妹, 韩志斌, 顾国庆. Josephson结的I-V曲线的子台阶.  , 1990, 39(5): 823-829. doi: 10.7498/aps.39.823
    [18] 钱敏, 潘涛, 刘曾荣. Josephson结的I-V曲线的理论分析.  , 1987, 36(2): 149-156. doi: 10.7498/aps.36.149
    [19] 史隆培, 廖绍彬. 微波铁氧体的介电常数和磁导率的测量.  , 1974, 23(3): 61-72. doi: 10.7498/aps.23.61
    [20] 孙家锺, 蒋栋成, 施安顿, 周木易. 电子极化对氟化钙离子晶体的弹性系数、压电系数和介电常数的影响.  , 1965, 21(2): 402-413. doi: 10.7498/aps.21.402
计量
  • 文章访问数:  12696
  • PDF下载量:  720
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-01-27
  • 修回日期:  2010-06-07
  • 刊出日期:  2011-03-15

/

返回文章
返回
Baidu
map