Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Stress exponent and threshold stress of in situ TiCp/LD7Al matrix composite in creep

Ji Feng Song Ai-Jun Zhang Wei-Guo Hao Qiu-Hong Bai Bang-Wei Liu Ri-Ping Ma Ming-Zhen

Citation:

Stress exponent and threshold stress of in situ TiCp/LD7Al matrix composite in creep

Ji Feng, Song Ai-Jun, Zhang Wei-Guo, Hao Qiu-Hong, Bai Bang-Wei, Liu Ri-Ping, Ma Ming-Zhen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The elevated temperature creep behavior of in situ 20vol%TiCP/LD7Al matrix composite and LD7Al alloy was investigated under the condition of constant compressive stress at 523 K,573 K and 623 K,respectively. The stress exponents of the composite material and the matrix aluminium alloy were obtained by fitting the creep rate and the applied stress in log-log plot,respectively. By introducing an effective stress (σ-σ0) to the power equation and extroplating the linearly-regressed experemental data to zero creep rate,the threshold stresses were obtained. The results showed that both the stress exponents and the threshold stresses of the composite were higher than those of LD7Al,indicating that the presence of TiC particles significantly improved the elevated temperature creep property of LD7Al. By introducing a threshold stress,the high-temperature creep behavior of the composite can be explained by the cooperative effect of the dislocation-climbing and the particle hindrance to the matrix deformation.
    [1]

    [1]Xiao B L,Ma Z Y,Bi J 2002 Acta Metall. Sin. 38 994 (in Chinese)[肖伯律、马宗义、毕敬 2002 金属学报 38 994]

    [2]

    [2]Huang M H,Wang H W,Li X F,Ma N H 2005 Acta Mater Compos. Sin. 22 36 (in Chinese)[黄明华、王浩伟、李险峰、马乃恒 2005 复合材料学报 22 36]

    [3]

    [3]Ma Z Y,Tjong S C 1999 Mater. Sci. Eng. A 278 5

    [4]

    [4]Li Y,Langdon T G 1997 Scripta Mater. 36 1457

    [5]

    [5]Li Y,Langdon T G 1998 Acta Mater. 46 1143

    [6]

    [6]Pandey A B,Mishra R S,Mahajan Y R 1992 Acta Metall Mater. 40 2045

    [7]

    [7]Park K T,Mohamed F A 1995 Metall. Meter. Trans. A 26 3119

    [8]

    [8]Xu F M,Wu Lawrence C M,Han G W,Tan Y 2007 Chin. J. Aeronaut. 20 115

    [9]

    [9]ACˇUadek J,Pahutov M,1ustek V 2000 Mater. Sci. Eng. A 281 162

    [10]

    ]ACˇUadek J,Kucha Arˇo v'K,Zhu S J 1998 Mater. Sci. Eng. A 246 252

    [11]

    ]Deshmukh S P,Mishra R S,Kendig K L 2005 Mater. Sci. Eng. A 410-411 53

    [12]

    ]Ji F,Ma M Z,Song A.J,Zhang W G,Zong H T,Liang S X,Osamu Y,Liu R P 2009 Mater. Sci. Eng. A 506 58

    [13]

    ]Zhang W G,Song A J,Liu R P,Ma M Z 2008 Mater. Sci. Eng. A 474 225

    [14]

    ]Ricardo F,Gaspar G D 2009 J. Alloys Compd. 478 133

    [15]

    ]Ricardo F,Gaspar G D 2008 Scripta Mater. 59 1135

    [16]

    ]Olbricht J,Yawny A,Young M L,Eggeler G 2009 Mater. Sci. Eng. A 510-511 407

    [17]

    ]Zong B Y,Derby B 1997 Acta Mater. 45 41

    [18]

    ]ACˇUadek J,Oikawa H,ustek V 1995 Mater. Sci. Eng. A 190 9

    [19]

    ]Mohamed F A 1998 Mater. Sci. Eng. A 245 242

    [20]

    ]Zhu S M,Tjong S C,Lai J K L 1998 Acta Mater. 46 2969

    [21]

    ]Shi N,Wilner B,Arsenault R J 1992 Acta Metall. Mater. 40 2841

    [22]

    ]Mohamed F A,Langdon T G 1974 Acta Metall. 22 779

    [23]

    ]Sherby O D,Klundt R H,Miller A K 1977 Metall. Trans A 8 843

    [24]

    ]Ricardo F,Gaspar G D 2008 Acta Mater. 56 2549

    [25]

    ]Ricardo F,Gaspar G D 2009 J. Alloys Compd. 475 202

    [26]

    ]Anastasia H. Muliana,Jeong Sik Kim 2007 Int. J. Solids Struct. 44 6891

    [27]

    ]Peng J,Long Z L,Wei H Q,Li X A,Zhang Z C 2009 Acta Phys. Sin. 58 4059 (in Chinese)[彭建、龙志林、危洪清、李乡安、张志纯 2009 58 4059]

    [28]

    ]Nieh T G 1984 Metall. Trans. A 15 139

    [29]

    ]Krajewski P E,Allison J E,Jones J W 1993 Metall. Trans. A 24 2731

    [30]

    ]Krajewski P E,Jones J W,Allison J E 1995 Metall. Mater. Trans. A 26 3107

    [31]

    ]Jin H M,Felix A,Aroyave M 2006 Acta Phys. Sin. 55 6157 (in Chinese)[靳惠明、Felix A、Aroyave M 2006 55 6157

    [32]

    ]Dlouhy A,Merk N,Eggeler G 1993 Acta Metall. Mater. 41 3245[33]Dlouhy A,Eggeler G,Merk N 1995 Acta Metall. Mater. 43 535

    [33]

    ]Nikhilesh C,Krishan K C 2006 Metal Matrix Composites (Springer,Printed in the United States of America) p320

    [34]

    ]Wu Z Y,Yang Y T,Chai C C,Li Y J,Wang J Y,Liu J 2009 Acta Phys. Sin. 58 2625 (in Chinese)[吴振宇、杨银堂、柴常春、李跃进、汪家友、刘静 2009 58 2625]

  • [1]

    [1]Xiao B L,Ma Z Y,Bi J 2002 Acta Metall. Sin. 38 994 (in Chinese)[肖伯律、马宗义、毕敬 2002 金属学报 38 994]

    [2]

    [2]Huang M H,Wang H W,Li X F,Ma N H 2005 Acta Mater Compos. Sin. 22 36 (in Chinese)[黄明华、王浩伟、李险峰、马乃恒 2005 复合材料学报 22 36]

    [3]

    [3]Ma Z Y,Tjong S C 1999 Mater. Sci. Eng. A 278 5

    [4]

    [4]Li Y,Langdon T G 1997 Scripta Mater. 36 1457

    [5]

    [5]Li Y,Langdon T G 1998 Acta Mater. 46 1143

    [6]

    [6]Pandey A B,Mishra R S,Mahajan Y R 1992 Acta Metall Mater. 40 2045

    [7]

    [7]Park K T,Mohamed F A 1995 Metall. Meter. Trans. A 26 3119

    [8]

    [8]Xu F M,Wu Lawrence C M,Han G W,Tan Y 2007 Chin. J. Aeronaut. 20 115

    [9]

    [9]ACˇUadek J,Pahutov M,1ustek V 2000 Mater. Sci. Eng. A 281 162

    [10]

    ]ACˇUadek J,Kucha Arˇo v'K,Zhu S J 1998 Mater. Sci. Eng. A 246 252

    [11]

    ]Deshmukh S P,Mishra R S,Kendig K L 2005 Mater. Sci. Eng. A 410-411 53

    [12]

    ]Ji F,Ma M Z,Song A.J,Zhang W G,Zong H T,Liang S X,Osamu Y,Liu R P 2009 Mater. Sci. Eng. A 506 58

    [13]

    ]Zhang W G,Song A J,Liu R P,Ma M Z 2008 Mater. Sci. Eng. A 474 225

    [14]

    ]Ricardo F,Gaspar G D 2009 J. Alloys Compd. 478 133

    [15]

    ]Ricardo F,Gaspar G D 2008 Scripta Mater. 59 1135

    [16]

    ]Olbricht J,Yawny A,Young M L,Eggeler G 2009 Mater. Sci. Eng. A 510-511 407

    [17]

    ]Zong B Y,Derby B 1997 Acta Mater. 45 41

    [18]

    ]ACˇUadek J,Oikawa H,ustek V 1995 Mater. Sci. Eng. A 190 9

    [19]

    ]Mohamed F A 1998 Mater. Sci. Eng. A 245 242

    [20]

    ]Zhu S M,Tjong S C,Lai J K L 1998 Acta Mater. 46 2969

    [21]

    ]Shi N,Wilner B,Arsenault R J 1992 Acta Metall. Mater. 40 2841

    [22]

    ]Mohamed F A,Langdon T G 1974 Acta Metall. 22 779

    [23]

    ]Sherby O D,Klundt R H,Miller A K 1977 Metall. Trans A 8 843

    [24]

    ]Ricardo F,Gaspar G D 2008 Acta Mater. 56 2549

    [25]

    ]Ricardo F,Gaspar G D 2009 J. Alloys Compd. 475 202

    [26]

    ]Anastasia H. Muliana,Jeong Sik Kim 2007 Int. J. Solids Struct. 44 6891

    [27]

    ]Peng J,Long Z L,Wei H Q,Li X A,Zhang Z C 2009 Acta Phys. Sin. 58 4059 (in Chinese)[彭建、龙志林、危洪清、李乡安、张志纯 2009 58 4059]

    [28]

    ]Nieh T G 1984 Metall. Trans. A 15 139

    [29]

    ]Krajewski P E,Allison J E,Jones J W 1993 Metall. Trans. A 24 2731

    [30]

    ]Krajewski P E,Jones J W,Allison J E 1995 Metall. Mater. Trans. A 26 3107

    [31]

    ]Jin H M,Felix A,Aroyave M 2006 Acta Phys. Sin. 55 6157 (in Chinese)[靳惠明、Felix A、Aroyave M 2006 55 6157

    [32]

    ]Dlouhy A,Merk N,Eggeler G 1993 Acta Metall. Mater. 41 3245[33]Dlouhy A,Eggeler G,Merk N 1995 Acta Metall. Mater. 43 535

    [33]

    ]Nikhilesh C,Krishan K C 2006 Metal Matrix Composites (Springer,Printed in the United States of America) p320

    [34]

    ]Wu Z Y,Yang Y T,Chai C C,Li Y J,Wang J Y,Liu J 2009 Acta Phys. Sin. 58 2625 (in Chinese)[吴振宇、杨银堂、柴常春、李跃进、汪家友、刘静 2009 58 2625]

  • [1] Meng Shao-Yi, Hao Qi, Wang Bing, Duan Ya-Juan, Qiao Ji-Chao. Effects of cooling rate on β relaxation process and stress relaxation of La-based amorphous alloys. Acta Physica Sinica, 2024, 73(3): 036101. doi: 10.7498/aps.73.20231417
    [2] Huang Bei-Bei, Hao Qi, Lyu Guo-Jian, Qiao Ji-Chao. Dynamical relaxation and stress relaxation of Zr-based metallic glass. Acta Physica Sinica, 2023, 72(13): 136101. doi: 10.7498/aps.72.20230181
    [3] Li Ling, Pan Tian-Ze, Ma Jia-Jun, Zhang Shan-Tao, Wang Yao-Jin. Mechanism of local stress field enhanced pyroelectric performance of PNZST:AlN composite ceramics. Acta Physica Sinica, 2022, 71(21): 217701. doi: 10.7498/aps.71.20221250
    [4] Duan Ya-Juan, Qiao Ji-Chao. Dynamic relaxation characteristics and stress relaxation behavior of Pd-based metallic glass. Acta Physica Sinica, 2022, 71(8): 086101. doi: 10.7498/aps.71.20212025
    [5] Zhang Jian-Qiang, Qin Yan-Jun, Fang Zheng, Fan Xiao-Zhen, Yang Hui-Ya, Kuang Fu-Li, Zhai Yao, Miao Yan-Long, Zhao Zi-Xiang, He Jia-Jun, Ye Hui-Qun, Fang Yun-Zhang. Mechanism of stress induced irreversible magnetic anisotropy in Fe-based alloy ribbons. Acta Physica Sinica, 2022, 71(24): 247501. doi: 10.7498/aps.71.20221509
    [6] Bai Jia-Hao, Guo Jian-Gang. Theoretical studies on bidirectional interfacial shear stress transfer of graphene/flexible substrate composite structure. Acta Physica Sinica, 2020, 69(5): 056201. doi: 10.7498/aps.69.20191730
    [7] Huang Hao, Zhang Kan, Wu Ming, Li Hu, Wang Min-Juan, Zhang Shu-Ming, Chen Jian-Hong, Wen Mao. Comparison between axial residual stresses measured by Raman spectroscopy and X-ray diffraction in SiC fiber reinforced titanium matrix composite. Acta Physica Sinica, 2018, 67(19): 197203. doi: 10.7498/aps.67.20181157
    [8] Jiang Zhao, Chen Xue-Kang. Study on controlling the stress in flexible Al/PI film by interface alloying. Acta Physica Sinica, 2015, 64(21): 216802. doi: 10.7498/aps.64.216802
    [9] Wei Zhi, Jin Guang-Yong, Peng Bo, Zhang Xi-He, Tan Yong. Supercontinuum generation in photonic crystal fiber and tapered single-mode fiber. Acta Physica Sinica, 2014, 63(19): 194205. doi: 10.7498/aps.63.194205
    [10] Zhang Zhao-Yang, Li Zhong-Yang, Qin Chang-Liang, Yin Jie, Zhang Chang-Tao, Mao Wei-Ping, Feng Qin-Yu. Analysis of stress-etching quality based on nanosecond pulse laser electrochemical machining. Acta Physica Sinica, 2013, 62(9): 094210. doi: 10.7498/aps.62.094210
    [11] Wu Zhong-Hua, Sun Guang-Ai, Liu Yi, Chen Bo, Yan Guan-Yun, Wang Jie, Huang Chao-Qiang, Wu Er-Dong, Li Wu-Hui. Small angle X-ray scattering study of the microstructure and interface characteristics of single crystal superalloys during creep process. Acta Physica Sinica, 2011, 60(1): 016102. doi: 10.7498/aps.60.016102
    [12] Jiang Zhong-Wei, Wang Wen-Xin, Gao Han-Chao, Li Hui, He Tao, Yang Cheng-Liang, Chen Hong, Zhou Jun-Ming. Effect of the GaAs/GaSb combination strain-buffer layer on self-assembled InAs quantum dots. Acta Physica Sinica, 2009, 58(1): 471-476. doi: 10.7498/aps.58.471
    [13] Peng Jian, Long Zhi-Lin, Wei Hong-Qing, Li Xiang-An, Zhang Zhi-Chun. Creep behavior of a Fe-based bulk amorphous alloy using nanoindentation. Acta Physica Sinica, 2009, 58(6): 4059-4065. doi: 10.7498/aps.58.4059
    [14] Zhang Jian-Min, Xu Ke-Wei. The measurement of creep rate sensitivity of copper at room temperature by using nanoindentation. Acta Physica Sinica, 2004, 53(8): 2439-2443. doi: 10.7498/aps.53.2439
    [15] ZHANG WU, WANG YAN. STRESS-OPTICAL BEHAVIORS OF OPTICALLY HETERO-GENEOUS FIBER REINFORCED COMPOSITES. Acta Physica Sinica, 1994, 43(7): 1192-1202. doi: 10.7498/aps.43.1192
    [16] LI YONG, KONG QING-PING. THE MECHANISM OF HIGH TEMPERATURE CREEP ASSOCIATED WITH THE CLIMB OF EXTENDED DISLOCATIONS. Acta Physica Sinica, 1989, 38(1): 91-97. doi: 10.7498/aps.38.91
    [17] KONG QING-PING, DAI YONG. A STUDY OF CREEP RUPTURE IN COPPER BY MEASUREMENTS OF INTERNAL FRICTION. Acta Physica Sinica, 1987, 36(7): 855-861. doi: 10.7498/aps.36.855
    [18] CHEN CHI, DENG ZHI-SHENG, WU BAI-QUN, DING SHU-SHENG. THE CREEP AND STRESS-RUPTURE PROPERTIES OF γ′ CRYSTALS. Acta Physica Sinica, 1974, 23(1): 69-76. doi: 10.7498/aps.23.69
    [19] Qian Lin-zhao;Liu Min-zhi. ON THE MICRO-CREEP OF TIN SINGLE CRYSTALS. Acta Physica Sinica, 1956, 12(3): 275-279. doi: 10.7498/aps.12.275
    [20] KE TING-SUI, KUNG CHING-PING. CREEP OF POLYCRYSTALLINE IRON UNDER SMALL TORSIONAL STRESS AND THE EFFECT OF CARBON UPON THE CREEP. Acta Physica Sinica, 1954, 10(4): 365-382. doi: 10.7498/aps.10.365
Metrics
  • Abstract views:  9103
  • PDF Downloads:  996
  • Cited By: 0
Publishing process
  • Received Date:  05 May 2009
  • Accepted Date:  11 July 2009
  • Published Online:  15 March 2010

/

返回文章
返回
Baidu
map