-
结构型雷达吸波材料不仅可以有效吸收雷达波, 还能同时承受载荷, 在雷达隐身领域具有重要应用. 基于超表面的结构型雷达吸波材料可以实现对雷达波近乎“完美”的吸收, 且具有结构轻薄的特点, 但其限制在于吸波带宽通常较窄. 针对该问题, 提出一种拓宽超表面吸波体工作带宽的新方法. 该方法利用可重构的思想, 通过在超表面中混合集成变容二极管和开关二极管, 将吸波频率的连续可调与离散搬移有机结合, 以此展宽吸波体的有效吸波带宽. 基于该方法, 设计了一款超宽带可调超表面吸波体, 并深入分析了其吸波机理, 通过开关二极管和变容二极管工作状态的调节与配合, 在4.57—8.51 GHz内实现了高效可调吸波. 实测结果验证了该吸波体的低雷达散射截面特性, 证实了设计方法的有效性. 所提出的宽带可调设计方法简单可行, 还可以拓展应用到其他类型的宽带微波器件设计.Structural radar absorber has important application in stealth field for its ability to effectively absorb incoming radar wave and to bear the load at the same time. Metasurface absorbers can achieve nearly-perfect absorption of radar wave, and have characteristics of light weight and thin structure, but their bandwidth are usually narrow. To solve this problem, a new method of broadening the bandwidth of metasurface absorber is proposed in this work. With varactor and PIN diode integrated in a hybrid manner, the continuous tunning and discrete switching are combined together to broaden the effective absorption bandwidth of the absorber. Using this method, an ultra-wideband tunable metasurface absorber is designed and the absorbing mechanism is analyzed in depth. By changing the bias voltages of PIN diodes and varactors, the absorbing frequency can be continuously tuned within a wide band from 4.57 GHz to 8.51 GHz. Measured results verify the low radar cross section characteristics of the absorber and the effectiveness of the design method. The proposed method is simple and feasible, and can be extended to other broadband structure design.
[1] Li T, Yang H, Li Q, Zhang C, Han J, Cong L, Cao X, Gao J 2019 Opt. Mater. Express 9 1161Google Scholar
[2] Yang H, Li T, Xu L, Cao X, Jidi L, Guo Z, Li P, Gao J 2021 IEEE T. Antenn. Propag. 69 1239Google Scholar
[3] Li T, Yang H, Li Q, Zhu X, Cao X, Gao J, Wu Z 2019 IET Microw. Antenna. P. 13 185Google Scholar
[4] 崔铁军, 吴浩天, 刘硕 2020 69 158101Google Scholar
Cui T J, Wu H T, Liu S 2020 Acta Phys. Sin 69 158101Google Scholar
[5] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218Google Scholar
[6] Jia Y, Liu Y, Guo Y J, Li K, Gong S X 2015 IEEE T. Antenn. Propag. 64 179Google Scholar
[7] Liu T, Cao X, Gao J, Zheng Q, Li W, Yang H 2013 IEEE T. Antenn. Propag. 61 1479Google Scholar
[8] Liu Y, Zhao X 2014 IEEE Antenn. Wirel. 13 1473Google Scholar
[9] Ren J, Gong S, Jiang W 2018 IEEE Antenn. Wirel. PP 17 102Google Scholar
[10] Landy N, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar
[11] Shen X P, Cui T J, Zhao J M, Ma H F, Jiang W X, Li H 2011 Opt. Express 19 9401Google Scholar
[12] Mei P, Zhang S, Lin X Q, Pedersen G F 2019 IEEE Antenn. Wirel. PP 18 521Google Scholar
[13] Zhang H B, Zhou P H, Lu H P, Xu Y Q, Liang D F, Deng L J 2012 IEEE T. Antenn. Propag. 61 976Google Scholar
[14] Costa F, Monorchio A, Manara G 2010 IEEE T. Antenn. Propag. 58 1551Google Scholar
[15] Lim D, Lim S 2019 IEEE Antenn. Wirel. PP 18 1887Google Scholar
[16] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东 2013 62 214101Google Scholar
Yang H H, Cao X Y, Gao J, Liu T, Li S J, Zhao Y, Yuan Z D, Zhang H 2013 Acta Phys. Sin 62 214101Google Scholar
[17] Lu X, Chen J, Peng Z, Wu Z, Anxue Z 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC) Taiyuan, China, July 18–21, 2019 p1
[18] Panwar R, Puthucheri S, Agarwala V, Singh D 2015 IEEE T. Microw. Theory Techn. 63 2438Google Scholar
[19] Zhao B, Huang C, Yang J, Song J, Guan C, Luo X 2020 IEEE Antenn. Wirel. PP 19 982Google Scholar
[20] Ghosh S K, Yadav V S, Das S, Bhattacharyya S 2020 IEEE T. Electromagn. C. 62 346Google Scholar
[21] Shang Y, Shen Z, Xiao S 2013 IEEE T. Antenn. Propag. 61 6022Google Scholar
[22] Zhang B, Jin C, Shen Z 2020 IEEE T. Microw. Theory Techn. 68 835Google Scholar
[23] Han Y, Che W 2017 IEEE Antenn. Wirel. PP 16 74Google Scholar
[24] Chen J, Hu Z, Wang G, Huang X, Wang S, Hu X, Liu M 2015 IEEE T. Antenn. Propag. 63 4367Google Scholar
[25] 杨欢欢, 曹祥玉, 高军, 李桐, 李思佳, 丛丽丽, 赵霞 2021 雷达学报 10 206Google Scholar
Ynag H H, Cao X Y, Gao J, Li T, Li S J, Cong L L, Zhao X 2021 J. Radars 10 206Google Scholar
[26] Hu N, Zhang J, Zha S, Liu C, Liu H, Liu P 2019 IEEE Antenn. Wirel. PP 18 373Google Scholar
[27] Kim S, Li A, Lee J, Sievenpiper D F 2021 IEEE T. Antenn. Propag. 69 2759Google Scholar
[28] Li A, Kim S, Luo Y, Li Y, Long J, Sievenpiper D F 2017 IEEE T. Microw. Theory Techn. 65 2810Google Scholar
[29] Zhang Y, Cao Z, Huang Z, Miao L, Bie S, Jiang J 2021 IEEE T. Antenn. Propag. 69 1204Google Scholar
[30] Costa F, Monorchio A, Vastante G P 2011 IEEE Antenn. Wirel. PP 10 11Google Scholar
[31] Xu W, Sonkusale S 2013 Appl. Phys. Lett. 103 031902Google Scholar
[32] Yuan H, Li H, Fang X, Wang Y, Cao Q 2021 IEEE Antenn. Wirel. PR 63 11Google Scholar
[33] Xu W H, He Y, Kong P, Li J L, Xu H B, Miao L, Bie S W, Jiang J J 2015 J. Appl. Phys. 118 184903Google Scholar
[34] Raad H R, Abbosh A I, Al-Rizzo H M, Rucker D G 2013 IEEE T. Antenn. Propag. 61 524Google Scholar
[35] Yang H, Cao X, Yang F, Gao J, Xu S, Li M, Chen X, Zhao Y, Zheng Y, Li S 2016 Sci. Rep. 6 35692Google Scholar
-
图 7 吸波体性能随介质基板厚度的变化(PIN导通, C = 0.71 pF, tanδ = 0.02) (a) 吸波率; (b) 表面阻抗实部; (c) 表面阻抗虚部
Fig. 7. Simulated performance of the proposed ultra-wideband AMSA with different substrate thicknesses (PIN diode at ON state, C = 0.71 pF, tanδ = 0.02): (a) Absorptivity; (b) real part of surface impedance; (c) imaginary part of surface impedance.
表 1 超宽带可调超表面吸波体仿真与实测性能
Table 1. Simulated and measured performance of ultra wideband adjustable surface absorber.
偏置电压/V C/
pF吸波峰值
频率/GHzRCS减缩峰值
频率/GHzVd Vc 仿真 仿真 实测 0.95 0.5 17.41 4.57 4.50 4.48 9.0 1.45 5.45 5.47 5.52 30.0 0.71 6.05 6.03 6.16 0 0.5 10.23 5.85 5.90 5.82 9.0 1.45 7.31 7.26 7.10 30.0 0.71 8.51 8.46 8.34 -
[1] Li T, Yang H, Li Q, Zhang C, Han J, Cong L, Cao X, Gao J 2019 Opt. Mater. Express 9 1161Google Scholar
[2] Yang H, Li T, Xu L, Cao X, Jidi L, Guo Z, Li P, Gao J 2021 IEEE T. Antenn. Propag. 69 1239Google Scholar
[3] Li T, Yang H, Li Q, Zhu X, Cao X, Gao J, Wu Z 2019 IET Microw. Antenna. P. 13 185Google Scholar
[4] 崔铁军, 吴浩天, 刘硕 2020 69 158101Google Scholar
Cui T J, Wu H T, Liu S 2020 Acta Phys. Sin 69 158101Google Scholar
[5] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218Google Scholar
[6] Jia Y, Liu Y, Guo Y J, Li K, Gong S X 2015 IEEE T. Antenn. Propag. 64 179Google Scholar
[7] Liu T, Cao X, Gao J, Zheng Q, Li W, Yang H 2013 IEEE T. Antenn. Propag. 61 1479Google Scholar
[8] Liu Y, Zhao X 2014 IEEE Antenn. Wirel. 13 1473Google Scholar
[9] Ren J, Gong S, Jiang W 2018 IEEE Antenn. Wirel. PP 17 102Google Scholar
[10] Landy N, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar
[11] Shen X P, Cui T J, Zhao J M, Ma H F, Jiang W X, Li H 2011 Opt. Express 19 9401Google Scholar
[12] Mei P, Zhang S, Lin X Q, Pedersen G F 2019 IEEE Antenn. Wirel. PP 18 521Google Scholar
[13] Zhang H B, Zhou P H, Lu H P, Xu Y Q, Liang D F, Deng L J 2012 IEEE T. Antenn. Propag. 61 976Google Scholar
[14] Costa F, Monorchio A, Manara G 2010 IEEE T. Antenn. Propag. 58 1551Google Scholar
[15] Lim D, Lim S 2019 IEEE Antenn. Wirel. PP 18 1887Google Scholar
[16] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东 2013 62 214101Google Scholar
Yang H H, Cao X Y, Gao J, Liu T, Li S J, Zhao Y, Yuan Z D, Zhang H 2013 Acta Phys. Sin 62 214101Google Scholar
[17] Lu X, Chen J, Peng Z, Wu Z, Anxue Z 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC) Taiyuan, China, July 18–21, 2019 p1
[18] Panwar R, Puthucheri S, Agarwala V, Singh D 2015 IEEE T. Microw. Theory Techn. 63 2438Google Scholar
[19] Zhao B, Huang C, Yang J, Song J, Guan C, Luo X 2020 IEEE Antenn. Wirel. PP 19 982Google Scholar
[20] Ghosh S K, Yadav V S, Das S, Bhattacharyya S 2020 IEEE T. Electromagn. C. 62 346Google Scholar
[21] Shang Y, Shen Z, Xiao S 2013 IEEE T. Antenn. Propag. 61 6022Google Scholar
[22] Zhang B, Jin C, Shen Z 2020 IEEE T. Microw. Theory Techn. 68 835Google Scholar
[23] Han Y, Che W 2017 IEEE Antenn. Wirel. PP 16 74Google Scholar
[24] Chen J, Hu Z, Wang G, Huang X, Wang S, Hu X, Liu M 2015 IEEE T. Antenn. Propag. 63 4367Google Scholar
[25] 杨欢欢, 曹祥玉, 高军, 李桐, 李思佳, 丛丽丽, 赵霞 2021 雷达学报 10 206Google Scholar
Ynag H H, Cao X Y, Gao J, Li T, Li S J, Cong L L, Zhao X 2021 J. Radars 10 206Google Scholar
[26] Hu N, Zhang J, Zha S, Liu C, Liu H, Liu P 2019 IEEE Antenn. Wirel. PP 18 373Google Scholar
[27] Kim S, Li A, Lee J, Sievenpiper D F 2021 IEEE T. Antenn. Propag. 69 2759Google Scholar
[28] Li A, Kim S, Luo Y, Li Y, Long J, Sievenpiper D F 2017 IEEE T. Microw. Theory Techn. 65 2810Google Scholar
[29] Zhang Y, Cao Z, Huang Z, Miao L, Bie S, Jiang J 2021 IEEE T. Antenn. Propag. 69 1204Google Scholar
[30] Costa F, Monorchio A, Vastante G P 2011 IEEE Antenn. Wirel. PP 10 11Google Scholar
[31] Xu W, Sonkusale S 2013 Appl. Phys. Lett. 103 031902Google Scholar
[32] Yuan H, Li H, Fang X, Wang Y, Cao Q 2021 IEEE Antenn. Wirel. PR 63 11Google Scholar
[33] Xu W H, He Y, Kong P, Li J L, Xu H B, Miao L, Bie S W, Jiang J J 2015 J. Appl. Phys. 118 184903Google Scholar
[34] Raad H R, Abbosh A I, Al-Rizzo H M, Rucker D G 2013 IEEE T. Antenn. Propag. 61 524Google Scholar
[35] Yang H, Cao X, Yang F, Gao J, Xu S, Li M, Chen X, Zhao Y, Zheng Y, Li S 2016 Sci. Rep. 6 35692Google Scholar
计量
- 文章访问数: 5060
- PDF下载量: 140
- 被引次数: 0