搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属锂在固态电池中的沉积机理、策略及表征

曹文卓 李泉 王胜彬 李文俊 李泓

引用本文:
Citation:

金属锂在固态电池中的沉积机理、策略及表征

曹文卓, 李泉, 王胜彬, 李文俊, 李泓

Mechanism, strategies, and characterizations of Li plating in solid state batteries

Cao Wen-Zhuo, Li Quan, Wang Sheng-Bin, Li Wen-Jun, Li Hong
PDF
HTML
导出引用
  • 全固态金属锂电池的能量密度有望达到现有商业化锂离子电池的2—5倍, 且有可能从本质上解决现有液态电解质锂离子电池的安全性问题. 要想实现全固态金属锂电池这一颠覆性技术, 克服金属锂/固态电解质界面存在的副反应严重、界面接触差、锂枝晶生长等一系列挑战至关重要. 本文探讨了金属锂在有机、无机固态电解质中的沉积机理及其控制策略, 以及金属锂负极的表征手段等, 为固态锂电池的实用化研究提供了建议. 在固态电池中, 电解质与负极之间固-固接触不良、缺陷、晶界、裂纹、孔隙、尖端附近较强的电场以及固态电解质自身的电子电导都可导致金属锂沉积, 进而演变成锂枝晶. 针对这些诱因, 可以通过提高固态电解质的机械强度, 增大并改善固态电解质和负极的界面接触, 减少固态电解质内部及表面的缺陷、杂质和孔隙, 限制固态电解质内部的阴离子运动, 诱导锂的均匀沉积, 修复不均匀沉积形成的锂枝晶等方法均匀化锂沉积. 固态锂电池走向应用仍然存在诸多挑战, 需要扎实的基础研究, 有目标导向的设计思路和全面、系统、创新的综合解决方案.
    Commercial lithium-ion batteries have inherent safety problems due to the usage of non-aqueous electrolyte as the electrolytes. The development of solid state lithium metal batteries is expected to solve these problems while achieving higher energy density. However, the problem of lithium plating still exists. This article reviews the deposition behavior of lithium metal anodes in solid-state batteries, and provides suggestions for high-energy-density and high-safety solid-state lithium batteries. This paper systematically summarizes the mechanism of Li deposition in polymers and inorganic solid state electrolytes, and discusses the strategies of controlling lithium deposition and preventing lithium dendrites and the characterization of Li metal anodes. In solid-state batteries, poor solid-solid contact between the electrolyte and the anode, defects, grain boundaries, cracks, pores, enhanced electric and ionic fields near the tip, and high electronic conductivity of the solid state electrolyte can all lead to lithium deposition, which may evolve into lithium dendrites. There are several strategies to control lithium deposition: 1). Use functional materials and structure design to induce uniform deposition of lithium, such as improving the solid state electrolyte/anode interfacial contact, using lithiophilic coatings or sites, and designing three-dimensional structure electrodes and solid state electrolytes. 2). Suppress the generation of lithium dendrites, such as limiting the free movement of anions in solid state electrolytes (especially polymer solid electrolytes), to reduce local space charge which induces lithium dendrites. In addition, optimizing the solid electrolyte synthesis process to reduce lithium dendrites caused by defects is also an important method. 3). Strategies for dendrites already formed are essential for safety concern. The dendritic deposition is one of the intrinsic properties of lithium. Thus, there is no guarantee that there will be no lithium dendrites, especially at high current density. Once lithium dendrites are formed, countermeasures are required. For example, improving the mechanical strength of solid state electrolytes, and using self-healing materials, structures, and cycling conditions are proposed to avoid safety hazards caused by lithium dendrites piercing. This article focuses on the control of lithium deposition. Suppressing lithium dendrites only solves a little problem of the application of lithium metal anodes. In the future, in order to use lithium metal as a negative electrode in practical all-solid-state batteries, many challenges need to be overcome, such as irreversible side reactions between lithium and other materials, safety and volume change of composite lithium anodes. In addition, in order to allow the laboratory's research results to be quickly transformed into applications, it is also necessary to establish battery design, assembly, and test standards that are in agreement with practical requirements. In short, all-solid-state lithium batteries still have a long way to go, but they have great potential for safe, high-performance, and low-cost energy storage systems in the future.
      通信作者: 李泓, hli@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFB0100100)和北京市科技计划(批准号: Z191100004719001)资助的课题
      Corresponding author: Li Hong, hli@iphy.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2016YFB0100100) and the Beijing Municipal Science and Technology Program, China (Grant No. Z191100004719001)
    [1]

    李泓 2018 储能科学与技术 7 188

    Li H 2018 Energy Stor. Sci. Technol. 7 188

    [2]

    Zu C, Li H 2011 Energy Environ. Sci. 4 2614Google Scholar

    [3]

    Cao W, Zhang J, Li H 2020 Energy Stor. Mater. 26 46Google Scholar

    [4]

    Monroe C, Newman J 2005 J. Electrochem. Soc. 152 A396Google Scholar

    [5]

    Xue Z G, He D, Xie X L 2015 J. Mater. Chem. A 3 19218Google Scholar

    [6]

    Bockris J L B a J O M 1962 Proc. R. Soc. London, Ser. A 268 485Google Scholar

    [7]

    Monroe C, Newman J 2003 J. Electrochem. Soc. 150 A1377Google Scholar

    [8]

    Akolkar R 2013 J. Power Sources 232 23Google Scholar

    [9]

    Akolkar R 2014 J. Power Sources 246 84Google Scholar

    [10]

    Dollé M l, Sannier L, Beaudoin B, Trentin M, Tarascon J M 2002 Electrochem. Solid-State Lett. 5Google Scholar

    [11]

    Harry K J, Hallinan D T, Parkinson D Y, MacDowell A A, Balsara N P 2014 Nat. Mater. 13 69Google Scholar

    [12]

    Harry K J, Liao X, Parkinson D Y, Minor A M, Balsara N P 2015 J. Electrochem. Soc. 162 A2699Google Scholar

    [13]

    Kushima A, So K P, Su C, Bai P, Kuriyama N, Maebashi T, Fujiwara Y, Bazant M Z, Li J 2017 Nano Energy 32 271Google Scholar

    [14]

    Steiger J, Kramer D, Mönig R 2014 J. Power Sources 261 112Google Scholar

    [15]

    郑碧珠, 王红春, 马嘉林, 龚正良, 杨勇 2017 中国科学: 化学 47

    Zheng B, Wang H, Ma J, Gong Z, Yang Y 2017 Sci. Chin. Chem. 47

    [16]

    Han X, Gong Y, Fu K, He X, Hitz G T, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman E D, Hu L 2017 Nat. Mater. 16 572

    [17]

    Nagao M, Hayashi A, Tatsumisago M, Kanetsuku T, Tsuda T, Kuwabata S 2013 Phys. Chem. Chem. Phys. 15 18600Google Scholar

    [18]

    Cheng E J, Sharafi A, Sakamoto J 2017 Electrochim. Acta 223 85Google Scholar

    [19]

    Yu S, Siegel D 2017 Chem. Mater. 29

    [20]

    Raj R, Wolfenstine J 2017 J. Power Sources 343 119Google Scholar

    [21]

    Yu S, Siegel D J 2018 ACS Appl. Mater. Interfaces 10 38151Google Scholar

    [22]

    Pesci Federico M, Brugge R H, Hekselman A K O, Cavallaro A, Chater R J, Aguadero A 2018 J. Mater. Chem. A 6 19817Google Scholar

    [23]

    Ren Y, Shen Y, Lin Y, Nan C W 2015 Electrochem. Commun. 57 27Google Scholar

    [24]

    Aguesse F, Manalastas W, Buannic L, Lopez Del Amo J M, Singh G, Llordes A, Kilner J 2017 ACS Appl. Mater. Interfaces 9 3808Google Scholar

    [25]

    Han F, Westover A S, Yue J, Fan X, Wang F, Chi M, Leonard D N, Dudney N J, Wang H, Wang C 2019 Nat. Energy 4 187Google Scholar

    [26]

    Tian H-K, Xu B, Qi Y 2018 J. Power Sources 392 79Google Scholar

    [27]

    Singh M, Odusanya O, Wilmes G M, Eitouni H B, Gomez E D, Patel A J, Chen V L, Park M J, Fragouli P, Iatrou H, Hadjichristidis N, Cookson D, Balsara N P 2007 Macromolecules 40 4578Google Scholar

    [28]

    Sadoway D R 2004 J. Power Sources 129 1Google Scholar

    [29]

    Trapa P E, Won Y Y, Mui S C, Olivetti E A, Huang B, Sadoway D R, Mayes A M, Dallek S 2005 J. Electrochem. Soc. 152 A1Google Scholar

    [30]

    Khurana R, Schaefer J L, Archer L A, Coates G W 2014 J. Am. Chem. Soc. 136 7395Google Scholar

    [31]

    Wolfenstine J, Allen J L, Sakamoto J, Siegel D J, Choe H 2018 Ionics 24 1271Google Scholar

    [32]

    Jackman S D, Cutler R A 2012 J. Power Sources 218 65Google Scholar

    [33]

    Ni J E, Case E D, Sakamoto J S, Rangasamy E, Wolfenstine J B 2012 J. Mater. Sci 47 7978Google Scholar

    [34]

    Wu J F, Pu B W, Wang D, Shi S Q, Zhao N, Guo X, Guo X 2019 ACS Appl. Mater. Interfaces 11 898Google Scholar

    [35]

    Huo H, Luo J, Thangadurai V, Guo X, Nan C-W, Sun X 2020 ACS Energy Lett. 5 252Google Scholar

    [36]

    Cheng L, Crumlin E J, Chen W, Qiao R, Hou H, Franz Lux S, Zorba V, Russo R, Kostecki R, Liu Z, Persson K, Yang W, Cabana J, Richardson T, Chen G, Doeff M 2014 Phys. Chem. Chem. Phys. 16 18294Google Scholar

    [37]

    Cheng L, Liu M, Mehta A, Xin H, Lin F, Persson K, Chen G, Crumlin E J, Doeff M 2018 ACS Appl. Energy Mater. 1 7244Google Scholar

    [38]

    Sharafi A, Kazyak E, Davis A L, Yu S, Thompson T, Siegel D J, Dasgupta N P, Sakamoto J 2017 Chem. Mater. 29 7961Google Scholar

    [39]

    Huo H, Chen Y, Zhao N, Lin X, Luo J, Yang X, Liu Y, Guo X, Sun X 2019 Nano Energy 61 119Google Scholar

    [40]

    Liu Y, Li C, Li B, Song H, Cheng Z, Chen M, He P, Zhou H 2018 Adv. Energy Mater. 8 1702374Google Scholar

    [41]

    Wenzel S, Leichtweiss T, Krüger D, Sann J, Janek J 2015 Solid State Ionics 278 98Google Scholar

    [42]

    Cui G 2020 Matter 2 805Google Scholar

    [43]

    Xu S, McOwen D W, Zhang L, Hitz G T, Wang C, Ma Z, Chen C, Luo W, Dai J, Kuang Y, Hitz E M, Fu K, Gong Y, Wachsman E D, Hu L 2018 Energy Stor. Mater. 15 458Google Scholar

    [44]

    McOwen D W, Xu S, Gong Y, Wen Y, Godbey G L, Gritton J E, Hamann T R, Dai J, Hitz G T, Hu L, Wachsman E D 2018 Adv. Mater. 30 1707132Google Scholar

    [45]

    Thomas-Alyea K E 2018 J. Electrochem. Soc. 165 A1523Google Scholar

    [46]

    Hitz G T, McOwen D W, Zhang L, Ma Z, Fu Z, Wen Y, Gong Y, Dai J, Hamann T R, Hu L, Wachsman E D 2019 Mater. Today 22 50Google Scholar

    [47]

    Sharafi A, Meyer H M, Nanda J, Wolfenstine J, Sakamoto J 2016 J. Power Sources 302 135Google Scholar

    [48]

    Cheng L, Chen W, Kunz M, Persson K, Tamura N, Chen G, Doeff M 2015 ACS Appl. Mater. Interfaces 7 2073Google Scholar

    [49]

    Liu H, Cheng X B, Huang J Q, Yuan H, Lu Y, Yan C, Zhu G L, Xu R, Zhao C Z, Hou L P, He C, Kaskel S, Zhang Q 2020 ACS Energy Lett. 5 833Google Scholar

    [50]

    Doux J M, Nguyen H, Tan D H S, Banerjee A, Wang X, Wu E A, Jo C, Yang H, Meng Y S 2020 Adv. Energy Mater. 10 1903253Google Scholar

    [51]

    Duan J, Wu W, Nolan A M, Wang T, Wen J, Hu C, Mo Y, Luo W, Huang Y 2019 Adv. Mater. 31 1807243Google Scholar

    [52]

    Yang X G, Liu T, Gao Y, Ge S, Leng Y, Wang D, Wang C Y 2019 Joule 3 3002Google Scholar

    [53]

    Tomaszewska A, Chu Z, Feng X, O'Kane S, Liu X, Chen J, Ji C, Endler E, Li R, Liu L, Li Y, Zheng S, Vetterlein S, Gao M, Du J, Parkes M, Ouyang M, Marinescu M, Offer G, Wu B 2019 eTransportation 1 100011

    [54]

    Kataoka K, Nagata H, Akimoto J 2018 Sci. Rep. 8 9965Google Scholar

    [55]

    Swamy T, Park R, Sheldon B W, Rettenwander D, Porz L, Berendts S, Uecker R, Carter W C, Chiang Y M 2018 J. Electrochem. Soc. 165 A3648Google Scholar

    [56]

    Patra S, Krupa B R V, Chakravarty S, Murugan R 2019 Electrochim. Acta 312 320

    [57]

    Botros M, Djenadic R, Clemens O, Möller M, Hahn H 2016 J. Power Sources 309 108Google Scholar

    [58]

    Sugata S, Saito N, Watanabe A, Watanabe K, Kim J D, Kitagawa K, Suzuki Y, Honma I 2018 Solid State Ionics 319 285Google Scholar

    [59]

    Suzuki Y, Kami K, Watanabe K, Watanabe A, Saito N, Ohnishi T, Takada K, Sudo R, Imanishi N 2015 Solid State Ionics 278 172Google Scholar

    [60]

    Brissot C, Rosso M, Chazalviel J N, Lascaud S 1999 J. Power Sources 81-82 925Google Scholar

    [61]

    Chazalviel J N 1990 Phys. Rev. A 42 7355Google Scholar

    [62]

    Zhang H, Li C, Piszcz M, Coya E, Rojo T, Rodriguez-Martinez L M, Armand M, Zhou Z 2017 Chem. Soc. Rev. 46 797Google Scholar

    [63]

    Cao C, Li Y, Feng Y, Peng C, Li Z, Feng W 2019 Energy Stor. Mater. 19 401Google Scholar

    [64]

    Tikekar M D, Archer L A, Koch D L 2016 Sci. Adv. 2 e1600320Google Scholar

    [65]

    Liang J Y, Zeng X X, Zhang X D, Zuo T T, Yan M, Yin Y X, Shi J L, Wu X W, Guo Y G, Wan L J 2019 J. Am. Chem. Soc. 141 9165Google Scholar

    [66]

    Yan K, Lu Z, Lee H W, Xiong F, Hsu P C, Li Y, Zhao J, Chu S, Cui Y 2016 Nat. Energy 1 16010Google Scholar

    [67]

    Zhang Y, Luo W, Wang C, Li Y, Chen C, Song J, Dai J, Hitz E M, Xu S, Yang C 2017 Proc. Natl. Acad. Sci. U.S.A 114 3584Google Scholar

    [68]

    Zhang C, Lv W, Zhou G, Huang Z, Zhang Y, Lyu R, Wu H, Yun Q, Kang F, Yang Q H 2018 Adv. Energy Mater. 8 1703404Google Scholar

    [69]

    Zhang R, Chen X R, Chen X, Cheng X B, Zhang X Q, Yan C, Zhang Q 2017 Angew. Chem. Int. Ed. Engl. 56 7764Google Scholar

    [70]

    Chen X, Chen X R, Hou T Z, Li B Q, Cheng X B, Zhang R, Zhang Q 2019 Sci. Adv. 5 eaau 5 eaau7728Google Scholar

    [71]

    Lee Y G, Fujiki S, Jung C, Suzuki N, Yashiro N, Omoda R, Ko D S, Shiratsuchi T, Sugimoto T, Ryu S, Ku J H, Watanabe T, Park Y, Aihara Y, Im D, Han I T 2020 Nat. Energy 5 299Google Scholar

    [72]

    Whiteley J M, Hafner S, Zhu C, Zhang W, Lee S-H J J o T E S 2017 J. Electrochem. Soc. 164 A2962Google Scholar

    [73]

    Zou P, Chiang S W, Zhan H, Sui Y, Liu K, Hu S, Su S, Li J, Kang F, Yang C 2020 Adv. Funct. Mater. 30 1910532Google Scholar

    [74]

    Li L, Basu S, Wang Y, Chen Z, Hundekar P, Wang B, Shi J, Shi Y, Narayanan S, Koratkar N 2018 Science 359 1513Google Scholar

    [75]

    Burns J C, Stevens D A, Dahn J R 2015 J. Electrochem. Soc. 162 A959Google Scholar

    [76]

    Downie L E, Krause L J, Burns J C, Jensen L D, Chevrier V L, Dahn J R 2013 J. Electrochem. Soc. 160 A588Google Scholar

    [77]

    Campbell I D, Marzook M, Marinescu M, Offer G J 2019 J. Electrochem. Soc. 166 A725Google Scholar

    [78]

    O’Kane S E J, Campbell I D, Marzook M W J, Offer G J, Marinescu M 2020 J. Electrochem. Soc. 167Google Scholar

    [79]

    Zhang W, Weber D A, Weigand H, Arlt T, Manke I, Schröder D, Koerver R, Leichtweiss T, Hartmann P, Zeier W G, Janek J 2017 ACS Appl. Mater. Interfaces 9 17835Google Scholar

    [80]

    Westover A S, Dudney N J, Sacci R L, Kalnaus S 2019 ACS Energy Lett. 4 651Google Scholar

    [81]

    Li Q, Yi T, Wang X, Pan H, Quan B, Liang T, Guo X, Yu X, Wang H, Huang X, Chen L, Li H 2019 Nano Energy 6 3

    [82]

    Wang C, Gong Y, Dai J, Zhang L, Xie H, Pastel G, Liu B, Wachsman E, Wang H, Hu L 2017 J. Am. Chem. Soc. 139 14257Google Scholar

    [83]

    Shen F, Dixit M B, Xiao X, Hatzell K B 2018 ACS Energy Lett. 3 1056Google Scholar

    [84]

    Zachman M J, Tu Z, Choudhury S, Archer L A, Kourkoutis L F 2018 Nature 560 345Google Scholar

    [85]

    Wang X, Zhang M, Alvarado J, Wang S, Sina M, Lu B, Bouwer J, Xu W, Xiao J, Zhang J G, Liu J, Meng Y S 2017 Nano Lett. 17 7606Google Scholar

    [86]

    Li Y, Li Y, Pei A, Yan K, Sun Y, Wu C L, Joubert L M, Chin R, Koh A L, Yu Y, Perrino J, Butz B, Chu S, Cui Y 2017 Science 358 506Google Scholar

    [87]

    Yu C, Ganapathy S, Eck E R H v, Wang H, Basak S, Li Z, Wagemaker M 2017 Nat. Commun. 8 1086Google Scholar

    [88]

    Randau S, Weber D A, Kötz O, Koerver R, Braun P, Weber A, Ivers-Tiffée E, Adermann T, Kulisch J, Zeier W G, Richter F H, Janek J 2020 Nat. Energy 5 259Google Scholar

  • 图 1  电沉积锂的电极表面示意图[9]

    Fig. 1.  Schematic of the electrode surface on which lithium is electrodeposited[9].

    图 2  枝晶横向生长的示意图[10]

    Fig. 2.  Schematic drawing showing a lateral growth for dendrites[10].

    图 3  同步硬X射线显微断层扫描切片探测到的锂从电极底部开始沉积生长 (a)−(d) 循环到各个阶段的对称锂电池的横截面的X射线断层扫描切片; (e)−(h) 显示在顶部的扫描切片对应的放大3D体重构电池图像[11]

    Fig. 3.  Subsurface structures underneath dendrites detected by synchrotron hard X-ray tomography slices: (a)−(d) X-ray tomography slices showing the cross-sections of symmetric lithium cells cycled to various stages; (e)−(h) magnified, 3D reconstructed volumes of cells shown in the top panel[11].

    图 4  无机固态电解质与锂负极之间的“点对点”式接触[16]

    Fig. 4.  Point-to-point contact between the inorganic solid state electrolyte and Li anode[16].

    图 5  锂枝晶沿晶界生长的SEM图像 (a) 未循环和(b) 循环后的Li6.25Al0.25La3Zr2O12[18]

    Fig. 5.  SEM image of dendrite propagation through the grain boundary: (a) Uncycled and (b) cycled Li6.25Al0.25La3Zr2O12[18].

    图 6  原位聚合过程的示意图[42]

    Fig. 6.  Schematic illustration of in situ polymerization processes[42].

    图 7  PAN/LATP/PEO三层复合固态电解质示意图 (a) LATP; (b) PAN/LATP/PEO; (c) PAN/LATP/PEO固态电解质的SEM图像[65]

    Fig. 7.  Schematic diagram of PAN/LATP/PEO three-layer composite solid electrolyte. Illustrations of the solid full battery: (a) Pristine LATP; (b) PAN/LATP/PEO solid electrolyte; (c) SEM image of PAN/LATP/PEO solid electrolyte[65].

    图 8  在有Ag-C纳米复合涂层的集流体上Li沉积脱出的示意图[71]

    Fig. 8.  Schematic of Li plating–stripping on the current collector with a Ag–C nanocomposite layer[71].

    图 9  使用聚亚胺防止颗粒间锂生长的自我修复机制示意图[72]

    Fig. 9.  Schematic of the self-healing mechanism for inter-particle lithium growth prevention using polyimine[72].

    图 10  锂在 (a)无骨架结构和(b)具有“自我校正”行为的周期性导电/介电骨架材料中的沉积行为示意图[73]

    Fig. 10.  Schematic diagram of Li metal evolution in (a) hostless configuration and (b) periodic conductive/dielectric host with a “self-correction” behavior[73].

    图 11  室温下Li/LLZO/Li对称电池的恒电流循环(插图显示最后两个循环)[18]

    Fig. 11.  Galvanostatic cycling (the inset shows the last two cycles) of a Li/LLZO/Li symmetric cell at room temperature[18].

    图 12  有LiNb0.5Ta0.5O3涂层的LiCoO2首次充电后全固态电池的奈奎斯特图[79]

    Fig. 12.  Nyquist plots for all-solid-state battery after the initial charge with LiNb0.5Ta0.5O3-coated LiCoO2[79].

    图 13  (a) 光学显微照片显示Li枝晶沿着两个Cu集流体之间的LiPON界面生长[80]; (b) 无3D Ti电极的全固态锂金属电池沉积锂后的截面图(23 μAh/cm2)[81]

    Fig. 13.  (a) Optical micrograph showing Li dendrites growing along lithium phosphorus oxynitride (LiPON) interface between two Cu current collectors[80]; (b) cross-sectional view of all-solid-state lithium metal battery w/o 3D Ti electrode after lithium plating (23 μAh/cm2)[81].

    图 14  原位NDP的实验装置示意图[25]

    Fig. 14.  Schematic diagram of the experimental set-up for operando NDP[25].

    图 15  (a) 同步辐射X射线断层扫描装置图; (b) 含有重元素的石榴石电解质会使得X射线衰减, 无法成像. 相比之下, 使用APS(白光束)的高能X射线, 可以独立识别孔和陶瓷相; (c) 使用高能X射线获取孔隙率, 晶粒和纹理细节[83]

    Fig. 15.  (a) Diagram of the synchrotron X-ray tomography setup; (b) garnet electrolytes dominated by heavy elements attenuate X-rays, and thus, imaging is impossible. In contrast, using high-energy X-rays at APS (white beam), the pore phase and ceramic phase can be identified independently; (c) the porosity, grain, and textural details can be extracted using high-energy X-rays[83].

    Baidu
  • [1]

    李泓 2018 储能科学与技术 7 188

    Li H 2018 Energy Stor. Sci. Technol. 7 188

    [2]

    Zu C, Li H 2011 Energy Environ. Sci. 4 2614Google Scholar

    [3]

    Cao W, Zhang J, Li H 2020 Energy Stor. Mater. 26 46Google Scholar

    [4]

    Monroe C, Newman J 2005 J. Electrochem. Soc. 152 A396Google Scholar

    [5]

    Xue Z G, He D, Xie X L 2015 J. Mater. Chem. A 3 19218Google Scholar

    [6]

    Bockris J L B a J O M 1962 Proc. R. Soc. London, Ser. A 268 485Google Scholar

    [7]

    Monroe C, Newman J 2003 J. Electrochem. Soc. 150 A1377Google Scholar

    [8]

    Akolkar R 2013 J. Power Sources 232 23Google Scholar

    [9]

    Akolkar R 2014 J. Power Sources 246 84Google Scholar

    [10]

    Dollé M l, Sannier L, Beaudoin B, Trentin M, Tarascon J M 2002 Electrochem. Solid-State Lett. 5Google Scholar

    [11]

    Harry K J, Hallinan D T, Parkinson D Y, MacDowell A A, Balsara N P 2014 Nat. Mater. 13 69Google Scholar

    [12]

    Harry K J, Liao X, Parkinson D Y, Minor A M, Balsara N P 2015 J. Electrochem. Soc. 162 A2699Google Scholar

    [13]

    Kushima A, So K P, Su C, Bai P, Kuriyama N, Maebashi T, Fujiwara Y, Bazant M Z, Li J 2017 Nano Energy 32 271Google Scholar

    [14]

    Steiger J, Kramer D, Mönig R 2014 J. Power Sources 261 112Google Scholar

    [15]

    郑碧珠, 王红春, 马嘉林, 龚正良, 杨勇 2017 中国科学: 化学 47

    Zheng B, Wang H, Ma J, Gong Z, Yang Y 2017 Sci. Chin. Chem. 47

    [16]

    Han X, Gong Y, Fu K, He X, Hitz G T, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman E D, Hu L 2017 Nat. Mater. 16 572

    [17]

    Nagao M, Hayashi A, Tatsumisago M, Kanetsuku T, Tsuda T, Kuwabata S 2013 Phys. Chem. Chem. Phys. 15 18600Google Scholar

    [18]

    Cheng E J, Sharafi A, Sakamoto J 2017 Electrochim. Acta 223 85Google Scholar

    [19]

    Yu S, Siegel D 2017 Chem. Mater. 29

    [20]

    Raj R, Wolfenstine J 2017 J. Power Sources 343 119Google Scholar

    [21]

    Yu S, Siegel D J 2018 ACS Appl. Mater. Interfaces 10 38151Google Scholar

    [22]

    Pesci Federico M, Brugge R H, Hekselman A K O, Cavallaro A, Chater R J, Aguadero A 2018 J. Mater. Chem. A 6 19817Google Scholar

    [23]

    Ren Y, Shen Y, Lin Y, Nan C W 2015 Electrochem. Commun. 57 27Google Scholar

    [24]

    Aguesse F, Manalastas W, Buannic L, Lopez Del Amo J M, Singh G, Llordes A, Kilner J 2017 ACS Appl. Mater. Interfaces 9 3808Google Scholar

    [25]

    Han F, Westover A S, Yue J, Fan X, Wang F, Chi M, Leonard D N, Dudney N J, Wang H, Wang C 2019 Nat. Energy 4 187Google Scholar

    [26]

    Tian H-K, Xu B, Qi Y 2018 J. Power Sources 392 79Google Scholar

    [27]

    Singh M, Odusanya O, Wilmes G M, Eitouni H B, Gomez E D, Patel A J, Chen V L, Park M J, Fragouli P, Iatrou H, Hadjichristidis N, Cookson D, Balsara N P 2007 Macromolecules 40 4578Google Scholar

    [28]

    Sadoway D R 2004 J. Power Sources 129 1Google Scholar

    [29]

    Trapa P E, Won Y Y, Mui S C, Olivetti E A, Huang B, Sadoway D R, Mayes A M, Dallek S 2005 J. Electrochem. Soc. 152 A1Google Scholar

    [30]

    Khurana R, Schaefer J L, Archer L A, Coates G W 2014 J. Am. Chem. Soc. 136 7395Google Scholar

    [31]

    Wolfenstine J, Allen J L, Sakamoto J, Siegel D J, Choe H 2018 Ionics 24 1271Google Scholar

    [32]

    Jackman S D, Cutler R A 2012 J. Power Sources 218 65Google Scholar

    [33]

    Ni J E, Case E D, Sakamoto J S, Rangasamy E, Wolfenstine J B 2012 J. Mater. Sci 47 7978Google Scholar

    [34]

    Wu J F, Pu B W, Wang D, Shi S Q, Zhao N, Guo X, Guo X 2019 ACS Appl. Mater. Interfaces 11 898Google Scholar

    [35]

    Huo H, Luo J, Thangadurai V, Guo X, Nan C-W, Sun X 2020 ACS Energy Lett. 5 252Google Scholar

    [36]

    Cheng L, Crumlin E J, Chen W, Qiao R, Hou H, Franz Lux S, Zorba V, Russo R, Kostecki R, Liu Z, Persson K, Yang W, Cabana J, Richardson T, Chen G, Doeff M 2014 Phys. Chem. Chem. Phys. 16 18294Google Scholar

    [37]

    Cheng L, Liu M, Mehta A, Xin H, Lin F, Persson K, Chen G, Crumlin E J, Doeff M 2018 ACS Appl. Energy Mater. 1 7244Google Scholar

    [38]

    Sharafi A, Kazyak E, Davis A L, Yu S, Thompson T, Siegel D J, Dasgupta N P, Sakamoto J 2017 Chem. Mater. 29 7961Google Scholar

    [39]

    Huo H, Chen Y, Zhao N, Lin X, Luo J, Yang X, Liu Y, Guo X, Sun X 2019 Nano Energy 61 119Google Scholar

    [40]

    Liu Y, Li C, Li B, Song H, Cheng Z, Chen M, He P, Zhou H 2018 Adv. Energy Mater. 8 1702374Google Scholar

    [41]

    Wenzel S, Leichtweiss T, Krüger D, Sann J, Janek J 2015 Solid State Ionics 278 98Google Scholar

    [42]

    Cui G 2020 Matter 2 805Google Scholar

    [43]

    Xu S, McOwen D W, Zhang L, Hitz G T, Wang C, Ma Z, Chen C, Luo W, Dai J, Kuang Y, Hitz E M, Fu K, Gong Y, Wachsman E D, Hu L 2018 Energy Stor. Mater. 15 458Google Scholar

    [44]

    McOwen D W, Xu S, Gong Y, Wen Y, Godbey G L, Gritton J E, Hamann T R, Dai J, Hitz G T, Hu L, Wachsman E D 2018 Adv. Mater. 30 1707132Google Scholar

    [45]

    Thomas-Alyea K E 2018 J. Electrochem. Soc. 165 A1523Google Scholar

    [46]

    Hitz G T, McOwen D W, Zhang L, Ma Z, Fu Z, Wen Y, Gong Y, Dai J, Hamann T R, Hu L, Wachsman E D 2019 Mater. Today 22 50Google Scholar

    [47]

    Sharafi A, Meyer H M, Nanda J, Wolfenstine J, Sakamoto J 2016 J. Power Sources 302 135Google Scholar

    [48]

    Cheng L, Chen W, Kunz M, Persson K, Tamura N, Chen G, Doeff M 2015 ACS Appl. Mater. Interfaces 7 2073Google Scholar

    [49]

    Liu H, Cheng X B, Huang J Q, Yuan H, Lu Y, Yan C, Zhu G L, Xu R, Zhao C Z, Hou L P, He C, Kaskel S, Zhang Q 2020 ACS Energy Lett. 5 833Google Scholar

    [50]

    Doux J M, Nguyen H, Tan D H S, Banerjee A, Wang X, Wu E A, Jo C, Yang H, Meng Y S 2020 Adv. Energy Mater. 10 1903253Google Scholar

    [51]

    Duan J, Wu W, Nolan A M, Wang T, Wen J, Hu C, Mo Y, Luo W, Huang Y 2019 Adv. Mater. 31 1807243Google Scholar

    [52]

    Yang X G, Liu T, Gao Y, Ge S, Leng Y, Wang D, Wang C Y 2019 Joule 3 3002Google Scholar

    [53]

    Tomaszewska A, Chu Z, Feng X, O'Kane S, Liu X, Chen J, Ji C, Endler E, Li R, Liu L, Li Y, Zheng S, Vetterlein S, Gao M, Du J, Parkes M, Ouyang M, Marinescu M, Offer G, Wu B 2019 eTransportation 1 100011

    [54]

    Kataoka K, Nagata H, Akimoto J 2018 Sci. Rep. 8 9965Google Scholar

    [55]

    Swamy T, Park R, Sheldon B W, Rettenwander D, Porz L, Berendts S, Uecker R, Carter W C, Chiang Y M 2018 J. Electrochem. Soc. 165 A3648Google Scholar

    [56]

    Patra S, Krupa B R V, Chakravarty S, Murugan R 2019 Electrochim. Acta 312 320

    [57]

    Botros M, Djenadic R, Clemens O, Möller M, Hahn H 2016 J. Power Sources 309 108Google Scholar

    [58]

    Sugata S, Saito N, Watanabe A, Watanabe K, Kim J D, Kitagawa K, Suzuki Y, Honma I 2018 Solid State Ionics 319 285Google Scholar

    [59]

    Suzuki Y, Kami K, Watanabe K, Watanabe A, Saito N, Ohnishi T, Takada K, Sudo R, Imanishi N 2015 Solid State Ionics 278 172Google Scholar

    [60]

    Brissot C, Rosso M, Chazalviel J N, Lascaud S 1999 J. Power Sources 81-82 925Google Scholar

    [61]

    Chazalviel J N 1990 Phys. Rev. A 42 7355Google Scholar

    [62]

    Zhang H, Li C, Piszcz M, Coya E, Rojo T, Rodriguez-Martinez L M, Armand M, Zhou Z 2017 Chem. Soc. Rev. 46 797Google Scholar

    [63]

    Cao C, Li Y, Feng Y, Peng C, Li Z, Feng W 2019 Energy Stor. Mater. 19 401Google Scholar

    [64]

    Tikekar M D, Archer L A, Koch D L 2016 Sci. Adv. 2 e1600320Google Scholar

    [65]

    Liang J Y, Zeng X X, Zhang X D, Zuo T T, Yan M, Yin Y X, Shi J L, Wu X W, Guo Y G, Wan L J 2019 J. Am. Chem. Soc. 141 9165Google Scholar

    [66]

    Yan K, Lu Z, Lee H W, Xiong F, Hsu P C, Li Y, Zhao J, Chu S, Cui Y 2016 Nat. Energy 1 16010Google Scholar

    [67]

    Zhang Y, Luo W, Wang C, Li Y, Chen C, Song J, Dai J, Hitz E M, Xu S, Yang C 2017 Proc. Natl. Acad. Sci. U.S.A 114 3584Google Scholar

    [68]

    Zhang C, Lv W, Zhou G, Huang Z, Zhang Y, Lyu R, Wu H, Yun Q, Kang F, Yang Q H 2018 Adv. Energy Mater. 8 1703404Google Scholar

    [69]

    Zhang R, Chen X R, Chen X, Cheng X B, Zhang X Q, Yan C, Zhang Q 2017 Angew. Chem. Int. Ed. Engl. 56 7764Google Scholar

    [70]

    Chen X, Chen X R, Hou T Z, Li B Q, Cheng X B, Zhang R, Zhang Q 2019 Sci. Adv. 5 eaau 5 eaau7728Google Scholar

    [71]

    Lee Y G, Fujiki S, Jung C, Suzuki N, Yashiro N, Omoda R, Ko D S, Shiratsuchi T, Sugimoto T, Ryu S, Ku J H, Watanabe T, Park Y, Aihara Y, Im D, Han I T 2020 Nat. Energy 5 299Google Scholar

    [72]

    Whiteley J M, Hafner S, Zhu C, Zhang W, Lee S-H J J o T E S 2017 J. Electrochem. Soc. 164 A2962Google Scholar

    [73]

    Zou P, Chiang S W, Zhan H, Sui Y, Liu K, Hu S, Su S, Li J, Kang F, Yang C 2020 Adv. Funct. Mater. 30 1910532Google Scholar

    [74]

    Li L, Basu S, Wang Y, Chen Z, Hundekar P, Wang B, Shi J, Shi Y, Narayanan S, Koratkar N 2018 Science 359 1513Google Scholar

    [75]

    Burns J C, Stevens D A, Dahn J R 2015 J. Electrochem. Soc. 162 A959Google Scholar

    [76]

    Downie L E, Krause L J, Burns J C, Jensen L D, Chevrier V L, Dahn J R 2013 J. Electrochem. Soc. 160 A588Google Scholar

    [77]

    Campbell I D, Marzook M, Marinescu M, Offer G J 2019 J. Electrochem. Soc. 166 A725Google Scholar

    [78]

    O’Kane S E J, Campbell I D, Marzook M W J, Offer G J, Marinescu M 2020 J. Electrochem. Soc. 167Google Scholar

    [79]

    Zhang W, Weber D A, Weigand H, Arlt T, Manke I, Schröder D, Koerver R, Leichtweiss T, Hartmann P, Zeier W G, Janek J 2017 ACS Appl. Mater. Interfaces 9 17835Google Scholar

    [80]

    Westover A S, Dudney N J, Sacci R L, Kalnaus S 2019 ACS Energy Lett. 4 651Google Scholar

    [81]

    Li Q, Yi T, Wang X, Pan H, Quan B, Liang T, Guo X, Yu X, Wang H, Huang X, Chen L, Li H 2019 Nano Energy 6 3

    [82]

    Wang C, Gong Y, Dai J, Zhang L, Xie H, Pastel G, Liu B, Wachsman E, Wang H, Hu L 2017 J. Am. Chem. Soc. 139 14257Google Scholar

    [83]

    Shen F, Dixit M B, Xiao X, Hatzell K B 2018 ACS Energy Lett. 3 1056Google Scholar

    [84]

    Zachman M J, Tu Z, Choudhury S, Archer L A, Kourkoutis L F 2018 Nature 560 345Google Scholar

    [85]

    Wang X, Zhang M, Alvarado J, Wang S, Sina M, Lu B, Bouwer J, Xu W, Xiao J, Zhang J G, Liu J, Meng Y S 2017 Nano Lett. 17 7606Google Scholar

    [86]

    Li Y, Li Y, Pei A, Yan K, Sun Y, Wu C L, Joubert L M, Chin R, Koh A L, Yu Y, Perrino J, Butz B, Chu S, Cui Y 2017 Science 358 506Google Scholar

    [87]

    Yu C, Ganapathy S, Eck E R H v, Wang H, Basak S, Li Z, Wagemaker M 2017 Nat. Commun. 8 1086Google Scholar

    [88]

    Randau S, Weber D A, Kötz O, Koerver R, Braun P, Weber A, Ivers-Tiffée E, Adermann T, Kulisch J, Zeier W G, Richter F H, Janek J 2020 Nat. Energy 5 259Google Scholar

  • [1] 任清勇, 王建立, 李昺, 马杰, 童欣. 复杂晶格动力学与能源材料的中子散射研究.  , 2025, 74(1): . doi: 10.7498/aps.74.20241178
    [2] 李梅, 钟淑英, 胡军平, 孙宝珍, 徐波. 固态电解质Li1+xAlxTi2–x (PO4)3中 Li+的迁移特性.  , 2024, 73(13): 138201. doi: 10.7498/aps.73.20240044
    [3] 华彪, 孙宝珍, 王靖轩, 石晶, 徐波. Li含量对Li3xLa(2/3)–x(1/3)–2xTiO3固态电解质表面稳定性、电子结构及Li离子输运性质的影响.  , 2023, 72(2): 028201. doi: 10.7498/aps.72.20221808
    [4] 杨源, 胡乃方, 金永成, 马君, 崔光磊. 富锂正极材料在全固态锂电池中的研究进展.  , 2023, 72(11): 118801. doi: 10.7498/aps.72.20230258
    [5] 耿晓彬, 李顶根, 徐波. 固态电解质电池锂枝晶生长机械应力-热力学相场模拟研究.  , 2023, 72(22): 220201. doi: 10.7498/aps.72.20230824
    [6] 何兵, 练宇翔, 吴木生, 罗文崴, 杨慎博, 欧阳楚英. 阳离子调控对卤化物固态电解质性能的改善.  , 2022, 71(20): 208201. doi: 10.7498/aps.71.20221050
    [7] 张海宝, 陈强. 非热等离子体材料表面处理及功能化研究进展.  , 2021, 70(9): 095203. doi: 10.7498/aps.70.20202233
    [8] 游逸玮, 崔建文, 张小锋, 郑锋, 吴顺情, 朱梓忠. 锂磷氧氮(LiPON)固态电解质与Li负极界面特性.  , 2021, 70(13): 136801. doi: 10.7498/aps.70.20202214
    [9] 冯吴亮, 王飞, 周星, 吉晓, 韩福东, 王春生. 固态电解质与电极界面的稳定性.  , 2020, 69(22): 228206. doi: 10.7498/aps.69.20201554
    [10] 张念, 任国玺, 章辉, 周櫈, 刘啸嵩. 石榴石型固态电解质表界面问题及优化的研究进展.  , 2020, 69(22): 228806. doi: 10.7498/aps.69.20201533
    [11] 刘玉龙, 辛明杨, 丛丽娜, 谢海明. 聚氧乙烯基聚合物固态电池的界面研究进展.  , 2020, 69(22): 228202. doi: 10.7498/aps.69.20201588
    [12] 赵宁, 穆爽, 郭向欣. 石榴石型固态锂电池中的物理问题.  , 2020, 69(22): 228804. doi: 10.7498/aps.69.20201191
    [13] 彭林峰, 曾子琪, 孙玉龙, 贾欢欢, 谢佳. 富钠反钙钛矿型固态电解质的简易合成与电化学性能.  , 2020, 69(22): 228201. doi: 10.7498/aps.69.20201227
    [14] 张桥保, 龚正良, 杨勇. 硫化物固态电解质材料界面及其表征的研究进展.  , 2020, 69(22): 228803. doi: 10.7498/aps.69.20201581
    [15] 余启鹏, 刘琦, 王自强, 李宝华. 全固态金属锂电池负极界面问题及解决策略.  , 2020, 69(22): 228805. doi: 10.7498/aps.69.20201218
    [16] 陈棋, 尚学府, 张鹏, 徐鹏, 王淼, 今西誠之. 流延法制备高锂离子电导Li1.4Al0.4Ti1.6(PO4)3固态电解质及其环氧树脂改性.  , 2017, 66(18): 188201. doi: 10.7498/aps.66.188201
    [17] 郭立强, 陶剑, 温娟, 程广贵, 袁宁一, 丁建宁. 玉米淀粉固态电解质质子\电子杂化突触晶体管.  , 2017, 66(16): 168501. doi: 10.7498/aps.66.168501
    [18] 郭立强, 温娟, 程广贵, 袁宁一, 丁建宁. 基于KH550-GO固态电解质中电容耦合作用的双侧栅IZO薄膜晶体管.  , 2016, 65(17): 178501. doi: 10.7498/aps.65.178501
    [19] 郭文昊, 肖惠, 门传玲. SiO2固态电解质中的质子特性对氧化物双电层薄膜晶体管性能的影响.  , 2015, 64(7): 077302. doi: 10.7498/aps.64.077302
    [20] 陈长波, 刘志明, 马琰铭, 崔 田, 刘冰冰, 邹广田. 压力及杂质氢对金属锂弹性特性的影响.  , 2007, 56(5): 2828-2832. doi: 10.7498/aps.56.2828
计量
  • 文章访问数:  16559
  • PDF下载量:  882
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-08
  • 修回日期:  2020-10-26
  • 上网日期:  2020-11-18
  • 刊出日期:  2020-11-20

/

返回文章
返回
Baidu
map