搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MoS2及其金属复合表面增强拉曼散射基底的发展及应用

李金华 张思楠 翟英娇 马剑刚 房文汇 张昱

引用本文:
Citation:

MoS2及其金属复合表面增强拉曼散射基底的发展及应用

李金华, 张思楠, 翟英娇, 马剑刚, 房文汇, 张昱

Development and application of MoS2 and its metal composite surface enhanced Raman scattering substrates

Li Jin-Hua, Zhang Si-Nan, Zhai Ying-Jiao, Ma Jian-Gang, Fang Wen-Hui, Zhang Yu
PDF
HTML
导出引用
  • 表面增强拉曼散射(surface enhanced Raman spectroscopy, SERS)作为一种超灵敏的无标签分析技术, 在分子检测领域得到了广泛的研究及发展, 而增强机理的探究及灵敏度、均匀性、稳定性等性能的提升一直是研究人员面临的重要挑战. 本文通过梳理SERS机理的国内外研究进展, 综述了单一金属基底、二硫化钼(MoS2)基底及金属/MoS2复合基底的机理及研究现状和存在的问题等; 总结介绍了二硫化钼基底及金属/二硫化钼复合基底制备方法的优缺点; 概述了二硫化钼及其金属复合基底在食品检测、生物医学、环境污染监测等方面的应用研究进展; 最后提出了SERS技术目前存在的不足并对其发展前景进行了展望.
    Surface-enhanced Raman scattering is an ultra-sensitive molecular detection technology, and the exploration of its mechanism and the improvement of sensitivity, uniformity and stability have always been significant challenge to researchers. In this paper, the development of surface-enhanced Raman scattering mechanism and its research progress, and thus review the mechanism, research status and existing problems of single metal substrate, molybdenum disulfide substrate and metal/molybdenum disulfide composite substrate are summarized; The preparation method of the molybdenum disulfide substrate including hydrothermal/solvothermal method, micromechanical peeling method, chemical meteorological deposition method, and preparation method of metal/molybdenum disulfide composite substrate are briefly introduced, in which the electrochemical method, thermal reduction method, seed-mediated growth method, and electron beam lithography method are covered, and the advantages and disadvantages of the above preparation methods are evaluated; The research progress of the applications of molybdenum disulfide and its metal composite substrates in food testing, biomedicine, environmental pollution monitoring, etc. are briefly overviewed The surface-enhanced Raman scattering study is extended to other transition metal binary compounds and their metal composite structures. Therefore, the metal/molybdenum disulfide composite substrate expands the types of surface-enhanced Raman scattering substrates, thereby making up for the deficiency of low reproducibility, poor stability, and weak adsorption. Moreover, it has the advantages of fluorescence quenching effect, high sensitivity, wide detection range, and it can be combined with on-site rapid separation technology, and thus has widespread application prospects. Finally, the shortcomings of surface-enhanced Raman scattering technology and prospects for its development are also pointed out.
      通信作者: 翟英娇, zhaiyingjiao0613@cust.edu.cn
    • 基金项目: 教育部“111”创新引智项目(批准号: D17017)、国家自然科学基金资助项目(批准号: 21703017, 11604024)、装备预研基金重点项目(批准号: 6140414020102)、吉林省科技发展计划项目(批准号: 20180519017JH)、吉林省教育厅项目(批准号: JJKH20170611KJ, JJKH20181101KJ, JJKH20181106KJ)、长春理工大学科技创新基金(批准号: XQNJJ-2016-14)和紫外光发射材料与技术教育部重点实验室开放课题资助的课题.
      Corresponding author: Zhai Ying-Jiao, zhaiyingjiao0613@cust.edu.cn
    • Funds: Project supported by the “111” Innovation and Intelligence Initiation Project of Ministry of Education of China (Grant No. D17017), the National Natural Science Foundation of China (Grant Nos. 21703017, 11604024), the Advance Recearch Project of Equipment (Grant No. 6140414020102), the Developing Project of Science and Technology of Jilin Province (Grant No. 20180519017JH), the Project of Education Department of Jilin Province (Grant Nos. JJKH20170611KJ, JJKH20181101KJ, JJKH20181106KJ), Science Foundation for Young Scientists of Changchun University of Science and Technology (Grant No. XQNJJ-2016-14), and Open Research Fund of Key laboratory of UV-Emitting Materials and Technology.
    [1]

    Howard M W, Cooney R P, Mcquillan A J 2010 J. Raman Spectrosc. 9 273

    [2]

    Hubbell J A, Chilkoti A 2012 Science 337 303Google Scholar

    [3]

    Jin I L, Lee W K 2015 Materials Lett. 160 139Google Scholar

    [4]

    Mulvihill M J, Ling X Y, Henzie J, Yang P 2010 J. Am. Chem. Soc. 132 268Google Scholar

    [5]

    Otto A 2005 J. Raman Spectrosc. 36 497Google Scholar

    [6]

    Sun Y, Wiederrecht G P 2007 Small 3 1825Google Scholar

    [7]

    Willets K A, Van Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267Google Scholar

    [8]

    Popp J, Mayerhöfer T 2009 Annu. Rev. Anal. Chem. 394 1717

    [9]

    Conley H, Wang B, Ziegler J I, Haglund R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626Google Scholar

    [10]

    Li X, Li J, Wang X, Hu J, Fang X, Chu X, Wei Z, Shan J, Ding X 2014 Integ. Ferroelectr. 158 26Google Scholar

    [11]

    Li J, Li X, Wang X, Hu J, Chu X, Fang X, Wei Z 2016 Surf. Eng. 32 245Google Scholar

    [12]

    Zhai Y, Li J, Chu X, Xu M, Jin F, Li X, Fang X, Wei Z, Wang X 2016 J. Alloy. Compd. 672 600Google Scholar

    [13]

    Zhai Y, Li J, Chu X, Xu M, Jin F, Fang X 2016 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) Chongqing, China, July 18-22, p287s

    [14]

    Shan J, Li J, Chu X, Xu M, Jin F, Fang X, Wei Z, Wang X 2018 Appl. Surf. Sci. 443 31Google Scholar

    [15]

    Shan J, Li J, Chu X, Xu M, Jin F, Wang X, Ma L, Fang X, Wei Z, Wang X 2018 RSC Adv. 8 7942Google Scholar

    [16]

    Jiang S, Guo J, Zhang C, Li C, Wang M, Li Z, Gao S, Chen P, Si H, Xu S 2017 RSC Adv. 7 5764Google Scholar

    [17]

    Hubbell J A, Chilkoti A 2013 Nature Materials 12 963

    [18]

    Fears R, Gehr P 2012 Nature 488 281

    [19]

    Singh R 2002 Phys. Perspect. 4 399Google Scholar

    [20]

    Jeanmaire D L, Van Duyne R 1977 J. Electroanal. Chem. Interfacial Electrochem. 84 1Google Scholar

    [21]

    Albrecht M G, Creighton J A 1977 J. Am. Chem. Soc. 99 5215Google Scholar

    [22]

    Banholzer M J, Millstone J E, Qin L, Mirkin C K A 2008 Chem. Soc. Rev. 37 885Google Scholar

    [23]

    Khlebtsov B N, Khlebtsov N G 2007 J. Phys. Chem. C 111 11516

    [24]

    李玉玲, 阚彩侠, 王长顺, 刘津升, 徐海英, 倪缘, 徐伟, 柯军华, 施大宁 2014 物理化学学报 30 1827Google Scholar

    Li Y L, Kan C X, Wang C S, Liu J S, Xu H Y, Ni Y, Xu W, Ke J H, Shi D N 2014 Acta Phys.- Chim. Sin. 30 1827Google Scholar

    [25]

    Brawley Z, Bauman S, Darweesh A, Debu D, Tork Ladani F, Herzog J 2018 Materials 11 942Google Scholar

    [26]

    Kneipp K, Wang Y, Dasari R R, Feld M S 1995 Appl. Spectrosc. 49 780Google Scholar

    [27]

    Zhang P, Yang S, Wang L, Zhao J, Zhu Z, Liu B, Zhong J, Sun X 2014 Nanotechnology 25 245301Google Scholar

    [28]

    Chirumamilla M, Das G, Toma A, Gopalakrishnan A, Zaccaria R P, Liberale C, Angelis D F, Di Fabrizio E 2012 Microelectron. Eng. 97 189Google Scholar

    [29]

    Wu T, Lin Y W 2018 Appl. Surf. Sci. 435 1143Google Scholar

    [30]

    Tian Z Q, Ren B, Wu D Y 2002 J. Phys. Chem. B 106 9463

    [31]

    Moskovits M 1985 Rev. Mod. Phys. 57 783Google Scholar

    [32]

    Natan M J 2006 Faraday Discuss. 132 321Google Scholar

    [33]

    Schlücker S 2014 Angew. Chem. Int. Edit. 53 4756Google Scholar

    [34]

    Zang X, Yao K, Yan A 2017 International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers) Taiwan, China, June 18-22, 2017 p894

    [35]

    Muehlethaler C, Considine C R, Menon V, Lin W C, Lee Y H, Lombardi J R 2016 Acs Photonics 3 1164Google Scholar

    [36]

    Xia M 2016 Ph. D. Dissertation(California: University of California)

    [37]

    Liang X, Wang Y S, You T T, Zhang X J, Yang N, Wang G S, Yin P G 2017 Nanoscale 9 8879Google Scholar

    [38]

    Shakya J, Patel A S, Singh F, Mohanty T 2016 Appl. Phys. Lett. 108 013103Google Scholar

    [39]

    Bhanu U, Islam M R, Tetard L, Khondaker S I 2014 Sci. Rep. 4 5575

    [40]

    Lu J, Lu J H, Liu H, Liu B, Gong L, Tok E S, Loh K P, Sow C H 2015 Small 11 1792Google Scholar

    [41]

    Hwang D Y, Suh D H 2017 Nanotechnology 28 025603Google Scholar

    [42]

    Zeng Z Q, Tang D, Liu L W 2016 Nanotechnology 27 455301Google Scholar

    [43]

    Li Z, Jiang S, Xu S, Zhang C, Qiu H, Li C, Sheng Y, Huo Y, Yang C, Man B 2016 Sensor. Actuat. B-Chem. 230 645Google Scholar

    [44]

    Singha S S, Mondal S, Bhattacharya T S, Das L, Sen K, Satpati B, Das K, Singha A 2018 Biosens. Bioelectron. 119 10Google Scholar

    [45]

    Fei X, Liu Z, Hou Y, Li Y, Yang G, Su C, Wang Z, Zhong H, Zhuang Z, Guo Z 2017 Materials 10 650Google Scholar

    [46]

    Yan D, Qiu W, Chen X, Liu L, Lai Y, Meng Z, Song J, Liu X Y, Zhan D 2018 Phys. Chem. C 122 14467Google Scholar

    [47]

    Qiu H, Li Z, Gao S, Chen P, Zhang C, Jiang S, Xu S, Yang C, Li H 2015 Rsc Adv. 5 83899Google Scholar

    [48]

    夏洪坤, 邹利锋, 马楠, 嵇天浩 2016 人工晶体学报 45 291Google Scholar

    Xia H K, Zou L F, Ma N, Ji T H 2016 J. Synthetic Cryst. 45 291Google Scholar

    [49]

    Najmaei S, Mlayah A, Arbouet A, Girard C, Léotin J, Lou J 2014 Acs Nano 8 12682Google Scholar

    [50]

    Butun S, Tongay S, Aydin K 2015 Nano Lett. 15 2700Google Scholar

    [51]

    Lee B, Park J, Han G H, Ee H S, Naylor C H, Liu W, Johnson A T, Agarwal R 2015 Nano Lett. 15 3646Google Scholar

    [52]

    Xu J, Li C, Si H, Zhao X, Wang L, Jiang S, Wei D, Yu J, Xiu X, Zhang C 2018 Opt. Express 26 21546Google Scholar

    [53]

    Liang X, Zhang X J, You T T, Yang N, Wang G S, Yin P G 2017 J. Raman Spectrosc. 49 245

    [54]

    Jin K, Xie L, Tian Y, Liu D 2016 J. Phys. Chem. C 120 11204Google Scholar

    [55]

    Zhao Y, Pan X, Zhang L, Xu Y, Li C, Wang J, Ou J, Xiu X, Man B, Yang C 2017 Rsc Adv. 7 36516Google Scholar

    [56]

    Kim J Y, Kim J, Joo J 2016 Opt. Express 24 27546Google Scholar

    [57]

    Lu Z, Si H, Li Z, Yu J, Liu Y, Feng D, Zhang C, Yang W, Man B, Jiang S 2018 Opt. Express 26 21626Google Scholar

    [58]

    Nair R, Gummaluri V S, Gayathri P K, Vijayan C 2017 Mater. Res. Express 4 015025Google Scholar

  • 图 1  金属、MoS2、金属/MoS2 SERS基底

    Fig. 1.  Metal, MoS2, metal/MoS2 SERS substrate.

    图 2  金属纳米球的局域表面等粒子共振示意图[22]

    Fig. 2.  Schematic diagram of local surface isopoly resonance of metal nanospheres[22]

    图 3  (a) Au矩形阵列SERS基底对R6G的SERS检测[27]; (b) Au纳米粒子、纳米圆环阵列基底对4-MBA的SERS检测[29]

    Fig. 3.  (a) SERS detection of R6G by Au rectangular array SERS substrate[27]; (b) SERS detection of 4-MBA by Au nanoparticles and nanoring array substrates[29]

    图 4  (a)单层MoS2基底检测R6G流程图及SERS光谱[34]; (b)单层MoS2基底对4-巯基吡啶的SERS检测[35]

    Fig. 4.  (a) Flow chart and SERS spectra of single-layer MoS2 substrate for detecting R6G[34]; (b) SERS detection of 4-mercaptopyridine by single-layer MoS2 substrate[35]

    图 5  Ag/MoS2纳米花复合SERS基底机理分析示意图[37]

    Fig. 5.  Analysis schematic diagram of Ag/MoS2 nanoflower SERS substrate mechanism[37]

    图 6  Au/MoS2复合SERS基底的费米能级移动示意图[39]

    Fig. 6.  Schematic diagram of Fermi level moving of Au/MoS2 composite SERS substrate[39]

    图 7  (a)卷轴形貌的Au/MoS2、Ag/MoS2复合基底增强拉曼强度比[41]; (b) Cu/MoS2复合基底、Cu基底对R6G的SERS检测[43]

    Fig. 7.  (a) Reinforced Raman intensity ratio of Au/MoS2, Ag/MoS2 composite substrate with reel profile[41]; (b) SERS detection of R6G by Cu/MoS2 composite substrate and Cu substrate[43]

    图 8  化学气相沉积法制备的金字塔形MoS2薄膜SERS基底[47]

    Fig. 8.  Pyramid-shaped MoS2 film SERS substrate prepared by chemical vapor deposition[47]

    图 9  电子束光刻法制备的Au领结/MoS2复合SERS基底 (a)[51], Au矩形/MoS2复合SERS基底[49] (b)和Au圆盘/MoS2复合SERS基底(c)[50]

    Fig. 9.  Au bow tie/MoS2 composite SERS substrate prepared by electron beam lithography(a)[51], Au rectangular/MoS2 composite SERS substrate prepared by electron beam lithography(b)[49] and Au disc/MoS2 composite SERS substrate prepared by electron beam lithography(c)[50]

    图 10  金字塔形Au-Ag/MoS2复合SERS基底检测三聚氰胺[52]

    Fig. 10.  Detection of melamine by pyramidal Au-Ag/MoS2 composite SERS substrate.[52]

    图 11  Au/MoS2作为SERS基底检测水中分离出的CV和TB分子[55]

    Fig. 11.  Au/MoS2 as SERS substrate for the detection of CV and TB molecules isolated from water[55]

    Baidu
  • [1]

    Howard M W, Cooney R P, Mcquillan A J 2010 J. Raman Spectrosc. 9 273

    [2]

    Hubbell J A, Chilkoti A 2012 Science 337 303Google Scholar

    [3]

    Jin I L, Lee W K 2015 Materials Lett. 160 139Google Scholar

    [4]

    Mulvihill M J, Ling X Y, Henzie J, Yang P 2010 J. Am. Chem. Soc. 132 268Google Scholar

    [5]

    Otto A 2005 J. Raman Spectrosc. 36 497Google Scholar

    [6]

    Sun Y, Wiederrecht G P 2007 Small 3 1825Google Scholar

    [7]

    Willets K A, Van Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267Google Scholar

    [8]

    Popp J, Mayerhöfer T 2009 Annu. Rev. Anal. Chem. 394 1717

    [9]

    Conley H, Wang B, Ziegler J I, Haglund R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626Google Scholar

    [10]

    Li X, Li J, Wang X, Hu J, Fang X, Chu X, Wei Z, Shan J, Ding X 2014 Integ. Ferroelectr. 158 26Google Scholar

    [11]

    Li J, Li X, Wang X, Hu J, Chu X, Fang X, Wei Z 2016 Surf. Eng. 32 245Google Scholar

    [12]

    Zhai Y, Li J, Chu X, Xu M, Jin F, Li X, Fang X, Wei Z, Wang X 2016 J. Alloy. Compd. 672 600Google Scholar

    [13]

    Zhai Y, Li J, Chu X, Xu M, Jin F, Fang X 2016 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) Chongqing, China, July 18-22, p287s

    [14]

    Shan J, Li J, Chu X, Xu M, Jin F, Fang X, Wei Z, Wang X 2018 Appl. Surf. Sci. 443 31Google Scholar

    [15]

    Shan J, Li J, Chu X, Xu M, Jin F, Wang X, Ma L, Fang X, Wei Z, Wang X 2018 RSC Adv. 8 7942Google Scholar

    [16]

    Jiang S, Guo J, Zhang C, Li C, Wang M, Li Z, Gao S, Chen P, Si H, Xu S 2017 RSC Adv. 7 5764Google Scholar

    [17]

    Hubbell J A, Chilkoti A 2013 Nature Materials 12 963

    [18]

    Fears R, Gehr P 2012 Nature 488 281

    [19]

    Singh R 2002 Phys. Perspect. 4 399Google Scholar

    [20]

    Jeanmaire D L, Van Duyne R 1977 J. Electroanal. Chem. Interfacial Electrochem. 84 1Google Scholar

    [21]

    Albrecht M G, Creighton J A 1977 J. Am. Chem. Soc. 99 5215Google Scholar

    [22]

    Banholzer M J, Millstone J E, Qin L, Mirkin C K A 2008 Chem. Soc. Rev. 37 885Google Scholar

    [23]

    Khlebtsov B N, Khlebtsov N G 2007 J. Phys. Chem. C 111 11516

    [24]

    李玉玲, 阚彩侠, 王长顺, 刘津升, 徐海英, 倪缘, 徐伟, 柯军华, 施大宁 2014 物理化学学报 30 1827Google Scholar

    Li Y L, Kan C X, Wang C S, Liu J S, Xu H Y, Ni Y, Xu W, Ke J H, Shi D N 2014 Acta Phys.- Chim. Sin. 30 1827Google Scholar

    [25]

    Brawley Z, Bauman S, Darweesh A, Debu D, Tork Ladani F, Herzog J 2018 Materials 11 942Google Scholar

    [26]

    Kneipp K, Wang Y, Dasari R R, Feld M S 1995 Appl. Spectrosc. 49 780Google Scholar

    [27]

    Zhang P, Yang S, Wang L, Zhao J, Zhu Z, Liu B, Zhong J, Sun X 2014 Nanotechnology 25 245301Google Scholar

    [28]

    Chirumamilla M, Das G, Toma A, Gopalakrishnan A, Zaccaria R P, Liberale C, Angelis D F, Di Fabrizio E 2012 Microelectron. Eng. 97 189Google Scholar

    [29]

    Wu T, Lin Y W 2018 Appl. Surf. Sci. 435 1143Google Scholar

    [30]

    Tian Z Q, Ren B, Wu D Y 2002 J. Phys. Chem. B 106 9463

    [31]

    Moskovits M 1985 Rev. Mod. Phys. 57 783Google Scholar

    [32]

    Natan M J 2006 Faraday Discuss. 132 321Google Scholar

    [33]

    Schlücker S 2014 Angew. Chem. Int. Edit. 53 4756Google Scholar

    [34]

    Zang X, Yao K, Yan A 2017 International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers) Taiwan, China, June 18-22, 2017 p894

    [35]

    Muehlethaler C, Considine C R, Menon V, Lin W C, Lee Y H, Lombardi J R 2016 Acs Photonics 3 1164Google Scholar

    [36]

    Xia M 2016 Ph. D. Dissertation(California: University of California)

    [37]

    Liang X, Wang Y S, You T T, Zhang X J, Yang N, Wang G S, Yin P G 2017 Nanoscale 9 8879Google Scholar

    [38]

    Shakya J, Patel A S, Singh F, Mohanty T 2016 Appl. Phys. Lett. 108 013103Google Scholar

    [39]

    Bhanu U, Islam M R, Tetard L, Khondaker S I 2014 Sci. Rep. 4 5575

    [40]

    Lu J, Lu J H, Liu H, Liu B, Gong L, Tok E S, Loh K P, Sow C H 2015 Small 11 1792Google Scholar

    [41]

    Hwang D Y, Suh D H 2017 Nanotechnology 28 025603Google Scholar

    [42]

    Zeng Z Q, Tang D, Liu L W 2016 Nanotechnology 27 455301Google Scholar

    [43]

    Li Z, Jiang S, Xu S, Zhang C, Qiu H, Li C, Sheng Y, Huo Y, Yang C, Man B 2016 Sensor. Actuat. B-Chem. 230 645Google Scholar

    [44]

    Singha S S, Mondal S, Bhattacharya T S, Das L, Sen K, Satpati B, Das K, Singha A 2018 Biosens. Bioelectron. 119 10Google Scholar

    [45]

    Fei X, Liu Z, Hou Y, Li Y, Yang G, Su C, Wang Z, Zhong H, Zhuang Z, Guo Z 2017 Materials 10 650Google Scholar

    [46]

    Yan D, Qiu W, Chen X, Liu L, Lai Y, Meng Z, Song J, Liu X Y, Zhan D 2018 Phys. Chem. C 122 14467Google Scholar

    [47]

    Qiu H, Li Z, Gao S, Chen P, Zhang C, Jiang S, Xu S, Yang C, Li H 2015 Rsc Adv. 5 83899Google Scholar

    [48]

    夏洪坤, 邹利锋, 马楠, 嵇天浩 2016 人工晶体学报 45 291Google Scholar

    Xia H K, Zou L F, Ma N, Ji T H 2016 J. Synthetic Cryst. 45 291Google Scholar

    [49]

    Najmaei S, Mlayah A, Arbouet A, Girard C, Léotin J, Lou J 2014 Acs Nano 8 12682Google Scholar

    [50]

    Butun S, Tongay S, Aydin K 2015 Nano Lett. 15 2700Google Scholar

    [51]

    Lee B, Park J, Han G H, Ee H S, Naylor C H, Liu W, Johnson A T, Agarwal R 2015 Nano Lett. 15 3646Google Scholar

    [52]

    Xu J, Li C, Si H, Zhao X, Wang L, Jiang S, Wei D, Yu J, Xiu X, Zhang C 2018 Opt. Express 26 21546Google Scholar

    [53]

    Liang X, Zhang X J, You T T, Yang N, Wang G S, Yin P G 2017 J. Raman Spectrosc. 49 245

    [54]

    Jin K, Xie L, Tian Y, Liu D 2016 J. Phys. Chem. C 120 11204Google Scholar

    [55]

    Zhao Y, Pan X, Zhang L, Xu Y, Li C, Wang J, Ou J, Xiu X, Man B, Yang C 2017 Rsc Adv. 7 36516Google Scholar

    [56]

    Kim J Y, Kim J, Joo J 2016 Opt. Express 24 27546Google Scholar

    [57]

    Lu Z, Si H, Li Z, Yu J, Liu Y, Feng D, Zhang C, Yang W, Man B, Jiang S 2018 Opt. Express 26 21626Google Scholar

    [58]

    Nair R, Gummaluri V S, Gayathri P K, Vijayan C 2017 Mater. Res. Express 4 015025Google Scholar

  • [1] 张天富, 司洋洋, 黎意杰, 陈祖煌. 锆酸铅基反铁电薄膜研究现状与展望.  , 2023, 72(9): 097704. doi: 10.7498/aps.72.20230389
    [2] 刘文英, 王公堂, 段鹏怡, 张文杰, 张灿, 胡晓璇, 刘玫. F4TCNQ/MoS2纳米复合异质材料的表面结构对SERS的影响.  , 2023, 72(3): 037402. doi: 10.7498/aps.72.20221958
    [3] 郑林启, 时术华, 李金泽, 王子宇, 李爽. 高温退火优化h-BN/Ag/Ag2O异质结构型及表面增强拉曼散射性能研究.  , 2023, 72(22): 227401. doi: 10.7498/aps.72.20231105
    [4] 李明, 金平实, 曹逊. 稀土含氧氢化物光致变色薄膜研究现状.  , 2022, 0(0): . doi: 10.7498/aps.7120221046
    [5] 厉桂华, 张梦雅, 马慧, 田悦, 焦安欣, 郑林启, 王畅, 陈明, 刘向东, 李爽, 崔清强, 李冠华. 低温促进表面等离激元共振效应及肌酐的超灵敏表面增强拉曼散射探测.  , 2022, 71(14): 146101. doi: 10.7498/aps.71.20220151
    [6] 刘超, 杨岳洋, 南策文, 林元华. MAX及其衍生MXene相碳化物的热电性能及展望.  , 2021, 70(20): 206501. doi: 10.7498/aps.70.20211050
    [7] 赵星, 郝祺, 倪振华, 邱腾. 单分子表面增强拉曼散射的光谱特性及分析方法.  , 2021, 70(13): 137401. doi: 10.7498/aps.70.20201447
    [8] 刘小红, 姜珊, 常林, 张炜. 非贵金属表面增强拉曼散射基底的研究进展.  , 2020, 69(19): 190701. doi: 10.7498/aps.69.20200788
    [9] 张鑫, 陈星, 白天, 游兴艳, 赵鑫, 刘向阳, 叶美丹. 柔性纤维状超级电容器的研究进展.  , 2020, 69(17): 178201. doi: 10.7498/aps.69.20200159
    [10] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性.  , 2020, 69(5): 058103. doi: 10.7498/aps.69.20191636
    [11] 王向贤, 白雪琳, 庞志远, 杨华, 祁云平, 温晓镭. 聚甲基丙烯酸甲酯间隔的金纳米立方体与金膜复合结构的表面增强拉曼散射研究.  , 2019, 68(3): 037301. doi: 10.7498/aps.68.20190054
    [12] 秦康, 袁列荣, 谭骏, 彭胜, 王前进, 张学进, 陆延青, 朱永元. 金属亚波长结构的表面增强拉曼散射.  , 2019, 68(14): 147401. doi: 10.7498/aps.68.20190458
    [13] 金晨东, 宋承昆, 王金帅, 王建波, 刘青芳. 磁斯格明子的微磁学研究进展和应用.  , 2018, 67(13): 137504. doi: 10.7498/aps.67.20180165
    [14] 程自强, 石海泉, 余萍, 刘志敏. 银纳米颗粒阵列的表面增强拉曼散射效应研究.  , 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [15] 郭旭东, 唐军, 刘文耀, 郭浩, 房国成, 赵苗苗, 王磊, 夏美晶, 刘俊. 锥柱型光纤探针在表面增强拉曼散射方面的应用.  , 2017, 66(4): 044208. doi: 10.7498/aps.66.044208
    [16] 张然, 肖鑫泽, 吕超, 骆杨, 徐颖. 金纳米棒的飞秒激光组装研究.  , 2014, 63(1): 014206. doi: 10.7498/aps.63.014206
    [17] 汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华. 界面自组装的金/氧化石墨烯复合材料的表面增强拉曼散射行为研究.  , 2014, 63(10): 107801. doi: 10.7498/aps.63.107801
    [18] 黄茜, 熊绍珍, 赵颖, 张晓丹. 表面等离子激元非线性表面增强拉曼散射效应.  , 2012, 61(15): 157801. doi: 10.7498/aps.61.157801
    [19] 黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖. 纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究.  , 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [20] 吴青松, 赵 岩, 张彩碚, 李 峰. 片状三角形银纳米颗粒的自组织行为与光学特性.  , 2005, 54(3): 1452-1456. doi: 10.7498/aps.54.1452
计量
  • 文章访问数:  15688
  • PDF下载量:  283
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-29
  • 修回日期:  2019-04-04
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-05

/

返回文章
返回
Baidu
map