搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni与钇稳定的氧化锆(111)表面相互作用以及界面活性的第一性原理研究

董珊 张岩星 张喜林 许晓培 毛建军 李东霖 陈志明 马款 范政权 魏丹丹 杨宗献

引用本文:
Citation:

Ni与钇稳定的氧化锆(111)表面相互作用以及界面活性的第一性原理研究

董珊, 张岩星, 张喜林, 许晓培, 毛建军, 李东霖, 陈志明, 马款, 范政权, 魏丹丹, 杨宗献

The first-principles study on the interaction of Ni with the yttria-stabilized zirconia and the activity of the interface

Dong Shan, Zhang Yan-Xing, Zhang Xi-Lin, Xu Xiao-Pei, Mao Jian-Jun, Li Dong-Lin, Chen Zhi-Ming, Ma Kuan, Fan Zheng-Quan, Wei Dan-Dan, Yang Zong-Xian
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理方法, 系统研究了Ni原子在钇稳定的氧化锆(YSZ)(111)和富氧的YSZ(YSZ+O)(111)表面不同位置的吸附, 以及CO和O2分子在Ni1(单个镍原子)/YSZ和Ni1/YSZ+O表面吸附的几何与电子结构特征. 结果表明: 1) 单个Ni原子倾向于吸附在O原子周围, 几乎不吸附在Y原子周围, 且Ni原子在氧空位上吸附最稳定; 2)和YSZ相比, 单个Ni原子在YSZ+O表面易发生氧化现象, Ni原子失去1.06 e电子, 被氧化成了Ni+, 吸附能力更强; 3)被氧化的Ni催化活性大幅下降, 大大减弱了表面对O2和CO等燃料气体的吸附作用.
    Solid oxide fuel cell (SOFC) is expected to be a crucial technology in future power generation due to its advantages of high efficiency, fuel adaptability, all-solid state, modular assembly, and low pollution. The Ni/YSZ (yttrium-stabilized zirconia) cermet is the most popular anode material in SOFCs. However, a major problem is that it can be easily oxidized, thus resulting in the decline of long-term stability and activity as an anode catalyst. A better performance of the Ni/YSZ cermet can be obtained by improving its microstructure as well as the Ni distribution in it. Interactions between Ni and the yttria-stabilized zirconia (YSZ) (111) or oxygen-enriched YSZ(111) (YSZ+O) surface are studied in terms of the first-principles method based on the density functional theory with particular focus put on the activity of the Ni atom at the interface. The geometric and electronic structures of CO and O2 on the Ni1 (the single Ni atom)/YSZ and Ni1/YSZ+O surfaces are also studied. It is found that the Ni atom tends to be adsorbed to O sites and away from the Y atoms on both the surfaces. The most favorable adsorption site is the oxygen vacancy, which has an adsorption energy of 2.85 eV. Compared with YSZ, the single Ni atom loses 1.06 electrons and is oxidized as Ni+ on YSZ+O, which produces a strong interaction between the Ni atom and YSZ+O. Strong adsorption is mainly attributed to the interaction between Ni 3d and Ou 2p orbitals. And the oxidation of Ni can lead to the decrease of electrocatalytic activity of the Ni catalyst. The d-band DOS (density of states) peaks of the Ni1/YSZ+O are lower than that of the Ni1/YSZ, and the corresponding d-band centers are shifted away from the Fermi level to lower energy with the d value of -3.69 eV; therefore the CO and O2 adsorption is weakened. While the adsorption energy for CO on the Ni1/YSZ+O (0.42 eV) is much lower than that on the Ni1/YSZ surface (1.78 eV). In addition, the adsorbed CO gains 0.07 electrons, less than those on the Ni1/YSZ surface (0.34 e). The adsorption energy of O2 on Ni1/YSZ+O also decreases (0.34 eV) and gains fewer electrons (0.24 e) as compared with the corresponding values (2.57 eV, 1.15 eV) on Ni1/YSZ. Results would improve our understanding on the mechanism of oxidation of Ni on the Ni/YSZ anode of SOFCs and would be of great importance for designing highly active catalysts used for fuel cells.
      通信作者: 杨宗献, yzx@henannu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11174070, 11474086)和河南师范大学大学生创新创业训练计划 (国家级)(批准号: 201310476036)资助的课题.
      Corresponding author: Yang Zong-Xian, yzx@henannu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.11174070,11474086), the National College Students' Innovative Entrepreneurial Training, China (Grant No. 201310476036).
    [1]

    Muoz M C, Gallego S, Beltrn J I, Cerd J 2006 Sur. Sci. Rep. 61 303

    [2]

    Williams M C, Strakey J P, Surdoval W A, Wilson L C 2006 Solid State Ionics 177 2039

    [3]

    Lin H Y, Fan Y, Kang Z F, Xu Y B, Bao Q R, Ding T Z 2015 Acta Phys. Sin. 64 236801 (in Chinese) [刘华艳, 范悦, 康振锋, 许彦彬, 薄青瑞, 丁铁柱 2015 64 236801]

    [4]

    Peng S P, Han M F, Yang C B, Wang Y Q 2004 Physics 33 0 (in Chinese) [彭苏萍, 韩敏芳, 杨翠柏, 王玉倩 2004 物理 33 0]

    [5]

    Zhang Y W, Wang X, Liu S Y, Tang M X, Zhao Z Q, Zhang P, Wang B Y, Cao X D 2014 Chin. Phys. B 23 066105

    [6]

    Laosiripojana N, Wiyaratn W, Kiatkittipong W, Arpornwichanop A, Soottitantawat A, Assabumrungrat S 2009 Eng. J. 13 65

    [7]

    Gorski A, Yurkiv V, Bessler W G, Volpp H R 2011 ECS Trans. 35 727

    [8]

    Perumal T P, Sridhar V, Murthy K, Easwarakumar K, Ramasamy S 2002 Physica A 309 35

    [9]

    Young J L, Vedahara V, Kung S, Xia S, Birss V 2007 ECS Trans. 7 1511

    [10]

    Geng S J, Zhu S L, Wang F H 2003 J. Chin. Soc. Corros. Rrot. 23 335 (in Chinese) [耿树江, 朱圣龙, 王福会 2003 中国腐蚀与防护学报 23 335]

    [11]

    Sasaki K, Haga K, Yoshizumi T, Minematsu D, Yuki E, Liu R, Uryu C, Oshima T, Ogura T, Shiratori Y, Ito K, Koyama M, Yokomoto K 2011 J. Power Sources 196 9130

    [12]

    Wang J H, Liu M 2008 J. Power Sources 176 23

    [13]

    Sarantaridis D, Atkinson A 2007 Fuel Cells 7 246

    [14]

    Kim S D, Moon H, Hyun S H, Moon J, Kim J, Lee H W 2006 Solid State Ionics 177 931

    [15]

    Clotide S, Cucinotta, Marco B, Michele P 2011 Phys. Rev. Lett. 107 206103

    [16]

    Kresse G, Furthmlle J 1996 Phys. Rev. B: Condens. Matter 54 11169

    [17]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [18]

    Cococcioni M, Gironcoli S 2005 Phys. Rev. B: Condens. Matter 71 035105

    [19]

    Chu X, Lu Z, Zhang Y, Yang Z 2013 Int. J. Hydrogen Energy 38 8974

    [20]

    Tang Y, Yang Z, Dai X 2012 J. Nanopart. Res. 14 844

    [21]

    Rostrup N J, Trimm D L 1977 J. Catal. 48 155

    [22]

    Holstein W L 1995 J. Catal. 152 42

    [23]

    Zhang X, Lu Z, Xu G, Wang T, Ma D, Yang Z, Yang L 2015 Phys. Chem. Chem. Phys. 17 20006

  • [1]

    Muoz M C, Gallego S, Beltrn J I, Cerd J 2006 Sur. Sci. Rep. 61 303

    [2]

    Williams M C, Strakey J P, Surdoval W A, Wilson L C 2006 Solid State Ionics 177 2039

    [3]

    Lin H Y, Fan Y, Kang Z F, Xu Y B, Bao Q R, Ding T Z 2015 Acta Phys. Sin. 64 236801 (in Chinese) [刘华艳, 范悦, 康振锋, 许彦彬, 薄青瑞, 丁铁柱 2015 64 236801]

    [4]

    Peng S P, Han M F, Yang C B, Wang Y Q 2004 Physics 33 0 (in Chinese) [彭苏萍, 韩敏芳, 杨翠柏, 王玉倩 2004 物理 33 0]

    [5]

    Zhang Y W, Wang X, Liu S Y, Tang M X, Zhao Z Q, Zhang P, Wang B Y, Cao X D 2014 Chin. Phys. B 23 066105

    [6]

    Laosiripojana N, Wiyaratn W, Kiatkittipong W, Arpornwichanop A, Soottitantawat A, Assabumrungrat S 2009 Eng. J. 13 65

    [7]

    Gorski A, Yurkiv V, Bessler W G, Volpp H R 2011 ECS Trans. 35 727

    [8]

    Perumal T P, Sridhar V, Murthy K, Easwarakumar K, Ramasamy S 2002 Physica A 309 35

    [9]

    Young J L, Vedahara V, Kung S, Xia S, Birss V 2007 ECS Trans. 7 1511

    [10]

    Geng S J, Zhu S L, Wang F H 2003 J. Chin. Soc. Corros. Rrot. 23 335 (in Chinese) [耿树江, 朱圣龙, 王福会 2003 中国腐蚀与防护学报 23 335]

    [11]

    Sasaki K, Haga K, Yoshizumi T, Minematsu D, Yuki E, Liu R, Uryu C, Oshima T, Ogura T, Shiratori Y, Ito K, Koyama M, Yokomoto K 2011 J. Power Sources 196 9130

    [12]

    Wang J H, Liu M 2008 J. Power Sources 176 23

    [13]

    Sarantaridis D, Atkinson A 2007 Fuel Cells 7 246

    [14]

    Kim S D, Moon H, Hyun S H, Moon J, Kim J, Lee H W 2006 Solid State Ionics 177 931

    [15]

    Clotide S, Cucinotta, Marco B, Michele P 2011 Phys. Rev. Lett. 107 206103

    [16]

    Kresse G, Furthmlle J 1996 Phys. Rev. B: Condens. Matter 54 11169

    [17]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [18]

    Cococcioni M, Gironcoli S 2005 Phys. Rev. B: Condens. Matter 71 035105

    [19]

    Chu X, Lu Z, Zhang Y, Yang Z 2013 Int. J. Hydrogen Energy 38 8974

    [20]

    Tang Y, Yang Z, Dai X 2012 J. Nanopart. Res. 14 844

    [21]

    Rostrup N J, Trimm D L 1977 J. Catal. 48 155

    [22]

    Holstein W L 1995 J. Catal. 152 42

    [23]

    Zhang X, Lu Z, Xu G, Wang T, Ma D, Yang Z, Yang L 2015 Phys. Chem. Chem. Phys. 17 20006

  • [1] 吴宇阳, 李卫, 任青颖, 李金泽, 许巍, 许杰. 金属Sc修饰Ti2CO2吸附气体分子的第一性原理研究.  , 2024, 73(7): 073101. doi: 10.7498/aps.73.20231432
    [2] 袁文翎, 姚碧霞, 李喜, 胡顺波, 任伟. 第一性原理计算研究γ'-Co3(V, M) (M = Ti, Ta)相的结构稳定性、力学和热力学性质.  , 2024, 73(8): 086104. doi: 10.7498/aps.73.20231755
    [3] 方语萱, 杨益, 夏志良, 霍宗亮. 3D NAND闪存中TiN与氧化表面F吸附作用的第一性原理研究.  , 2024, 73(12): 128502. doi: 10.7498/aps.73.20240254
    [4] 张江林, 王仲民, 王殿辉, 胡朝浩, 王凤, 甘伟江, 林振琨. V/Pd界面氢吸附扩散行为的第一性原理研究.  , 2023, 72(16): 168801. doi: 10.7498/aps.72.20230132
    [5] 李俊炜, 贾维敏, 吕沙沙, 魏雅璇, 李正操, 王金涛. 氢气在γ-U (100) /Mo表面吸附行为的第一性原理研究.  , 2022, 71(22): 226601. doi: 10.7498/aps.71.20220631
    [6] 周红才, 黄树来, 李桂霞, 于桂凤, 王娟, 步红霞. 一氧化碳纳米管束低压相的第一性原理研究.  , 2019, 68(21): 217101. doi: 10.7498/aps.68.20190539
    [7] 盛喆, 戴显英, 苗东铭, 吴淑静, 赵天龙, 郝跃. 各Li吸附组分下硅烯氢存储性能的第一性原理研究.  , 2018, 67(10): 107103. doi: 10.7498/aps.67.20172720
    [8] 刘坤, 王福合, 尚家香. NiTi(110)表面氧原子吸附的第一性原理研究.  , 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [9] 杨光敏, 梁志聪, 黄海华. 石墨烯吸附Li团簇的第一性原理计算.  , 2017, 66(5): 057301. doi: 10.7498/aps.66.057301
    [10] 姜平国, 汪正兵, 闫永播. 三氧化钨表面氢吸附机理的第一性原理研究.  , 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
    [11] 刘峰斌, 陈文彬, 崔岩, 屈敏, 曹雷刚, 杨越. 活性质吸附氢修饰金刚石表面的第一性原理研究.  , 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [12] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究.  , 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [13] 何静芳, 郑树凯, 周鹏力, 史茹倩, 闫小兵. Cu-Co共掺杂ZnO光电性质的第一性原理计算.  , 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [14] 张杨, 黄燕, 陈效双, 陆卫. InSb(110)表面S,O原子吸附的第一性原理研究.  , 2013, 62(20): 206102. doi: 10.7498/aps.62.206102
    [15] 罗强, 唐斌, 张智, 冉曾令. H2S在Fe(100)面吸附的第一性原理研究.  , 2013, 62(7): 077101. doi: 10.7498/aps.62.077101
    [16] 房彩红, 尚家香, 刘增辉. 氧在Nb(110)表面吸附的第一性原理研究.  , 2012, 61(4): 047101. doi: 10.7498/aps.61.047101
    [17] 肖振林, 史力斌. 利用第一性原理研究Ni掺杂ZnO铁磁性起源.  , 2011, 60(2): 027502. doi: 10.7498/aps.60.027502
    [18] 李琦, 范广涵, 熊伟平, 章勇. ZnO 极性表面及其N原子吸附机理的第一性原理研究.  , 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [19] 关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭. Al和Ni共掺ZnO光学性质的第一性原理研究.  , 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [20] 张计划, 丁建文, 卢章辉. Co掺杂MgF2电子结构和光学特性的第一性原理研究.  , 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
计量
  • 文章访问数:  6756
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-25
  • 修回日期:  2015-12-17
  • 刊出日期:  2016-03-05

/

返回文章
返回
Baidu
map