-
在6 GPa和1500 ℃的压力和温度范围内, 利用高压熔渗生长法制备了纯金刚石聚晶, 深入研究了高温高压下金刚石聚晶生长过程中碳的转化机制. 利用光学显微镜、X-射线衍射、场发射扫描电子显微镜检测, 发现在熔渗过程中金刚石层出现了石墨化现象, 在烧结过程中金刚石颗粒表面形貌发生了变化. 根据实验现象分析, 在制备过程中存在三种碳的转化机制: 1)金属熔渗阶段金刚石颗粒表面石墨化产生石墨; 2)产生的石墨在烧结阶段很快转变为填充空隙的金刚石碳; 3)金刚石直接溶解在金属溶液中, 以金刚石形式在颗粒间析出, 填充空隙. 本文研究碳的转化机制为在高温高压金属溶剂法合成金刚石的条件下(6 GPa和1500 ℃的压力和温度范围内)工业批量化制备无添加剂、无空隙的纯金刚石聚晶提供了重要的理论指导.Recently, a variety of carbon materials can be turned into pure polycrystalline diamond directly without any additives under extreme high pressures and high temperatures (pressure above 13 GPa and temperature above 2000 ℃). Polycrystalline diamond shows a broad application prospect because of its superior performance. However, it is difficult to realize the industrialization of pure polycrystalline diamond on current high pressure equipment due to the high synthetic conditions. The focus of our work is that the synthesis of pure polycrystalline diamond can be realized in the same synthesis range of single diamond produced from the solvent metal (pressure below 6 GPa and temperature below 1500 ℃). The carbon materials can precipitate from the solution in a form of diamond, and fill into the gaps between the diamond particles. According to some domestic scholars' researches on polycrystalline diamond, the solvent method can reduce the high temperature and high pressure conditions on which carbon may transform into diamond directly, and precipitate from the solution in the form of diamond into the gaps between diamond particles. Through a deep study of the approach, the low addition content, even pure polycrystalline diamond without gaps can be prepared. In this paper we have prepared pure polycrystalline diamonds under relatively lower conditions (the pressure being below 6 GPa and the temperature below 1500 ℃) by the method that the metal solution layer infiltrates into the gaps between the pure diamond particles and then the diamond particles will grow up. We also carry out a research on the mechanism of carbon transformation in the preparation of polycrystalline diamond. Compared with the traditional method of powder mixing technology, the melt infiltration and growth method is more advantageous to prepare high abrasive resistance and high density pure polycrystalline diamond.In order to prepare pure flawless polycrystalline diamonds without additives by China-type large volume cubic high-pressure apparatus (CHPA) (SPD-61200), we study thoroughly on the melt infiltration and growth method under high pressures; and this provides a theoretical guidance for pure polycrystalline diamond synthesis. In this paper, polycrystalline diamond is prepared by melt infiltration and growth method at pressures below 6 GPa and temperatures below 1500 ℃. Mechanism research of carbon transformation is made under high pressure and high temperature (HPHT). Through the analyses of optical microscope, X-ray diffraction, and field emission scanning electron microscope measurements, graphitization occurs on the surface of diamond in the procedure of metal solution infiltrating, and then the generated graphite quickly change into diamond-like carbon under HPHT. Meanwhile, the morphology of diamond particles changes distinctly in the syntheses process. From the analysis of experimental phenomena, carbon may undergo three transformations in the preparation: 1) graphite is generated due to the graphitization on the surface of diamond particles, which is caused by the metal solution infiltrating; 2) the generated graphite quickly fills into the gap with the form of diamond-like carbon during the sintering stage; 3) the diamond-like carbon is dissolved in a metal solution, and then precipitates between particles in the form of diamond. The mechanism research on carbon source transformation plays an important guiding role in the industrialization of no-additive, no-gap pure polycrystalline diamond preparation.
-
Keywords:
- pure polycrystalline diamond /
- melt infiltration and growth method under high pressure /
- carbon transformation
[1] Chrenko R M, Mcdonald R S, Darrow K A 1967 Nature 213 474
[2] Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H 2003 Nature 421 599
[3] Huang Q, Yu D L, Xu B, Hu W T, Ma Y M, Wang Y B, Zhao Z S, Wen B, He J L, Liu Z Y, Tian Y J 2014 Nature 510 250
[4] Kunuku S, Sankaran K J, Tsai C Y, Chang W H, Tai N H, Leou K C, Lin I N 2013 Appl. Mater. Interfaces 5 7439
[5] Kim Y D, Choi W, Wakimoto H, Usami S, Tomokage H, Ando T 1999 Appl. Phys. Lett. 75 3219
[6] Zhang W J, Meng X M, Chan C Y, Wu Y, Bello I, Lee S T 2003 Appl. Phys. Lett. 82 2622
[7] Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Sci. China: Phys. Mech. Astron. 55 781
[8] Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A 2014 Acta Phys. Sin. 63 048101 (in Chinese) [颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安 2014 63 048101]
[9] Fang C, Jia X P, Chen N, Zhou Z X, Li Y D, Li Y, Ma H A 2015 Acta Phys. Sin. 64 128101 (in Chinese) [房超, 贾晓鹏, 陈宁, 周振翔, 李亚东, 李勇, 马红安 2015 64 128101]
[10] Zhou Z X, Jia X P, Li Y, Yan B M, Wang F B, Fang C, Chen N, Li Y D, Ma H A 2014 Acta. Phys. Sin. 63 248104 (in Chinese) [周振翔, 贾晓鹏, 李勇, 颜丙敏, 王方标, 房超, 陈宁, 李亚东, 马红安 2014 63 248104]
[11] Fang L g, Qin G P, Kong C Y, Ruan H B, Huang G J, Cui Y T 2010 Chin. Phys. B 19 117501
[12] Strong H M, Hanneman R E 1967 J. Chem. Phys. 46 3668
[13] Bundy F P, Hall H T, Strong H M, Wentorf R H 1955 Nature 176 51
[14] Irifune T, Kurio A, Sakamoto S, Inour T, Sumiya H, Funakoshi K 2004 Phys. Ear. Plan. Inter. 143-144 593
[15] Xu C, He D w, Wang H K, Wang W D, Tang M J, Wang P 2014 Chin. Sci. Bull. 59 5251
[16] Xu C, He D W, Wang H K, Guan J W, Liu C M, Peng F, Wang W D, Kou Z L, He K, Yan X Z, Bi Y, Liu L, Li F J, Hui B 2013 Int. J. Regract. Met. H. 36 232
[17] Sumiya H, Irifune T 2004 Diam. Relat. Mater. 14 1771
[18] Dubrobinskata N, Dubrovinsky L, Langenhorst F, Jacobsen S, Liebske C 2005 Diam. Relat. Mater. 14 16
[19] Yusa H 2002 Diam. Relat. Mater. 11 87
[20] Sumiya H, Harano K 2012 Diam. Relat. Mater. 24 44
[21] Harano K, Saton T, Sumiya H, Kukino S 2012 Diam. Relat. Mater. 24 78
[22] Li Y, Jia X P, Feng Y G, Fang C, Fan L J, Li Y D, Zeng X, Ma H A 2015 Chin. Phys. B 24 088104
[23] Hu M H, Bi N, Li S S, Su T C, Zhou A G, Hu Q, Jia X P, Ma H A 2015 Chin. Phys. B 24 038101
[24] Li Z C, Jia X P, Huang G F, Hu M H, Li Y, Yan B M, Ma H A 2013 Chin. Phys. B 22 014701
[25] Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101
[26] Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Chin. Phys. B 21 038103
[27] Deng F M, Wang Q, Lu S D, Zhao D, Zhao X K 2013 Superhard Mater. Eng. 25 49
[28] Hong S M, Luo X J, Chen S X, Jiang R Z, Gou Q Q 1990 Chin. J. High Pressure Phys. 4 105
[29] Hong S M 2005 Superhard Mate. Eng. 1 1
[30] Ma H A, Jia X P, Chen L X, Zhu P W, Guo W L, Guo X B, Wang Y D, Li S Q, Zou G T, Zhang G, Philip B J 2002 Phys.: Condens. Matter. 14 11269
[31] Shao H L, Wang H K, Xu S K, Chen Y J, LI Y, Peng J, Zou W J 2015 Mater. Rev. 29 81
[32] Strong H M, Hanneman R E 1967 J. Chem. Phys. 46 3668
-
[1] Chrenko R M, Mcdonald R S, Darrow K A 1967 Nature 213 474
[2] Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H 2003 Nature 421 599
[3] Huang Q, Yu D L, Xu B, Hu W T, Ma Y M, Wang Y B, Zhao Z S, Wen B, He J L, Liu Z Y, Tian Y J 2014 Nature 510 250
[4] Kunuku S, Sankaran K J, Tsai C Y, Chang W H, Tai N H, Leou K C, Lin I N 2013 Appl. Mater. Interfaces 5 7439
[5] Kim Y D, Choi W, Wakimoto H, Usami S, Tomokage H, Ando T 1999 Appl. Phys. Lett. 75 3219
[6] Zhang W J, Meng X M, Chan C Y, Wu Y, Bello I, Lee S T 2003 Appl. Phys. Lett. 82 2622
[7] Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Sci. China: Phys. Mech. Astron. 55 781
[8] Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A 2014 Acta Phys. Sin. 63 048101 (in Chinese) [颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安 2014 63 048101]
[9] Fang C, Jia X P, Chen N, Zhou Z X, Li Y D, Li Y, Ma H A 2015 Acta Phys. Sin. 64 128101 (in Chinese) [房超, 贾晓鹏, 陈宁, 周振翔, 李亚东, 李勇, 马红安 2015 64 128101]
[10] Zhou Z X, Jia X P, Li Y, Yan B M, Wang F B, Fang C, Chen N, Li Y D, Ma H A 2014 Acta. Phys. Sin. 63 248104 (in Chinese) [周振翔, 贾晓鹏, 李勇, 颜丙敏, 王方标, 房超, 陈宁, 李亚东, 马红安 2014 63 248104]
[11] Fang L g, Qin G P, Kong C Y, Ruan H B, Huang G J, Cui Y T 2010 Chin. Phys. B 19 117501
[12] Strong H M, Hanneman R E 1967 J. Chem. Phys. 46 3668
[13] Bundy F P, Hall H T, Strong H M, Wentorf R H 1955 Nature 176 51
[14] Irifune T, Kurio A, Sakamoto S, Inour T, Sumiya H, Funakoshi K 2004 Phys. Ear. Plan. Inter. 143-144 593
[15] Xu C, He D w, Wang H K, Wang W D, Tang M J, Wang P 2014 Chin. Sci. Bull. 59 5251
[16] Xu C, He D W, Wang H K, Guan J W, Liu C M, Peng F, Wang W D, Kou Z L, He K, Yan X Z, Bi Y, Liu L, Li F J, Hui B 2013 Int. J. Regract. Met. H. 36 232
[17] Sumiya H, Irifune T 2004 Diam. Relat. Mater. 14 1771
[18] Dubrobinskata N, Dubrovinsky L, Langenhorst F, Jacobsen S, Liebske C 2005 Diam. Relat. Mater. 14 16
[19] Yusa H 2002 Diam. Relat. Mater. 11 87
[20] Sumiya H, Harano K 2012 Diam. Relat. Mater. 24 44
[21] Harano K, Saton T, Sumiya H, Kukino S 2012 Diam. Relat. Mater. 24 78
[22] Li Y, Jia X P, Feng Y G, Fang C, Fan L J, Li Y D, Zeng X, Ma H A 2015 Chin. Phys. B 24 088104
[23] Hu M H, Bi N, Li S S, Su T C, Zhou A G, Hu Q, Jia X P, Ma H A 2015 Chin. Phys. B 24 038101
[24] Li Z C, Jia X P, Huang G F, Hu M H, Li Y, Yan B M, Ma H A 2013 Chin. Phys. B 22 014701
[25] Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101
[26] Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Chin. Phys. B 21 038103
[27] Deng F M, Wang Q, Lu S D, Zhao D, Zhao X K 2013 Superhard Mater. Eng. 25 49
[28] Hong S M, Luo X J, Chen S X, Jiang R Z, Gou Q Q 1990 Chin. J. High Pressure Phys. 4 105
[29] Hong S M 2005 Superhard Mate. Eng. 1 1
[30] Ma H A, Jia X P, Chen L X, Zhu P W, Guo W L, Guo X B, Wang Y D, Li S Q, Zou G T, Zhang G, Philip B J 2002 Phys.: Condens. Matter. 14 11269
[31] Shao H L, Wang H K, Xu S K, Chen Y J, LI Y, Peng J, Zou W J 2015 Mater. Rev. 29 81
[32] Strong H M, Hanneman R E 1967 J. Chem. Phys. 46 3668
计量
- 文章访问数: 6116
- PDF下载量: 216
- 被引次数: 0