搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

(NiCoV)95W5中熵合金的动态力学性能与变形机理研究

路圣晗 陈颂阳 崔广鹏 周丹 蔡伟金 宋旼 王章维

引用本文:
Citation:

(NiCoV)95W5中熵合金的动态力学性能与变形机理研究

路圣晗, 陈颂阳, 崔广鹏, 周丹, 蔡伟金, 宋旼, 王章维

Dynamic Mechanical Properties and Deformation Mechanism of (NiCoV)95W5 Medium Entropy Alloy

Lu Shenghan, Chen Songyang, Cui Guangpeng, Zhou Dan, Cai Weijin, Song min, Wang Zhangwei
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 中熵合金因其独特的强塑性协同效应,在高应变速率服役的结构材料领域展现出广阔应用前景。本研究聚焦于NiCoV中熵合金体系,通过引入高熔点钨元素(5 at.%)进行合金化设计,采用真空电弧熔炼结合热机械处理工艺制备了(NiCoV)95W5合金。基于分离式霍普金森压杆实验平台,系统揭示了该合金在2000-6000 s-1高应变速率下的动态响应机制与变形机理。研究发现:合金展现出优异的应变速率敏感性(m=0.42),当应变速率从准静态(10-3 s-1)提升至动态(6000 s-1)时,屈服强度显著提升162%(720→1887 MPa),这一强化效应源于高应变速率下晶格畸变诱导的声子拖曳作用显著增强。通过显微分析,揭示了该合金体系在高应变速率下的多尺度协同变形机理:2000 s-1时以位错平面滑移为主导,当速率增至4000 s-1时形成高密度位错缠结网络并激发部分析出相协同变形,而在6000 s-1条件下则通过诱发变形孪晶实现加工硬化的存续。本研究阐明了W元素掺杂的NiCoV中熵合金动态力学行为与变形机制,为设计具有优异动态力学响应的新型结构材料提供了参考。
    Medium-entropy alloys (MEAs), known for their outstanding strength and ductility, offer great potential for high strain-rate applications. This study focuses on a NiCoV-based MEA system, where a novel alloy design strategy was proposed by introducing 5 at.% high-melting-point tungsten through vacuum arc melting coupled with thermomechanical processing to fabricate the (NiCoV)95 W5 alloy. Split Hopkinson pressure bar (SHPB) experiments were conducted to elucidate the dynamic response mechanisms and deformation behavior under high strain rates (2000-6000 s-1). The results show that the enhanced phonon drag effect at elevated strain rates, caused by severe lattice distortion, leads to a substantial increase of 162% in yield strength from 720 MPa (10-3 s-1) to 1887 MPa (6000 s-1), accompanying with a relatively high strain-rate sensitivity (m = 0.42); Microscopic analysis revealed the multi-scale cooperative deformation mechanism of the alloy system under high strain rate. When the strain rate is 2000 s-1, the alloy exhibits a low dislocation density dominated by dislocation planar slip. As the strain rate rises to 4000 s-1, elevated flow stress and deformation promote substantial dislocation multiplication and entanglement into high-density dislocation cells. Dislocation pile-up stress induces co-deformation of precipitates and releases stress concentration at the phase interface. Upon further increasing the strain rate to 6000 s-1, severe plastic deformation induces nano-twin formation within the matrix, as prevailing strain hardening. This study illustrates the tungsten-doping mediated dynamic response mechanisms in MEAs, providing a guidance for designing novel structural materials with excellent dynamic mechanical responses.
  • [1]

    Cao T, Zhang Q, Wang L, Wang L, Xiao Y, Yao J, Liu H, Ren Y, Liang J, Xue Y, Li X 2023 Acta Mater. 260 119343

    [2]

    Chen H H, Zhang X F, Liu C, Lin K F, Xiong W, Tan M T 2021Explos. Shock Waves 41 30(in Chinese)[陈海华,张先锋,刘闯,林琨富,熊玮,谈梦婷2021 爆炸与冲击 41 30]

    [3]

    Yoshida S, Ikeuchi T, Bhattacharjee T, Bai Y, Shibata A, Tsuji N 2019 Acta Mater. 171 201

    [4]

    Li W, Xie D, Li D, Zhang Y, Gao Y, Liaw P K 2021 Prog. Mater Sci. 118 100777

    [5]

    Cai W, Long Q, Lu S, Wang K, He J, Zhao S, Xiong Z, Hu J, Xia W, Baker I, Gan K, Song M, Wang Z 2025 Int. J. Plast. 184 104204

    [6]

    Zhu M, Zhang C, Xu J F, Jian Z Y, Hui Z Z 2025Acta Metall. sin. 61 88(in Chinese)[朱满,张成,许军锋,坚增运,惠增哲2025 金属学报 61 88]

    [7]

    Li N, He J, Zhou Y, Gu J, Ni S, Song M 2022 Mater. Sci. Eng. A 856 143944

    [8]

    Jiang K, Li J, Suo T 2024 Int. J. Plast. 176 103968

    [9]

    Park J M, Moon J, Bae J W, Jang M J, Park J, Lee S, Kim H S 2018 Mater. Sci. Eng. A 719 155

    [10]

    Yin B, Maresca F, Curtin W A 2020 Acta Mater. 188 486

    [11]

    Cai W, He J, Wang L, Yang W, Xu X, Yaqoob K, Wang Z, Song M 2023 Scr. Mater. 231 115463

    [12]

    Sohn S S, Kwiatkowski da Silva A, Ikeda Y, Kormann F, Lu W, Choi W S, Gault B, Ponge D, Neugebauer J, Raabe D 2019 Adv. Mater. 31 1807142

    [13]

    Sohn S S, Kim D G, Jo Y H, da Silva A K, Lu W, Breen A J, Gault B, Ponge D 2020 Acta Mater. 194 106

    [14]

    He J, Cai W, Li N, Wang L, Wang Z, Dai S, Lei Z, Wu Z, Song M, Lu Z 2024 Int. J. Plast. 183 104180

    [15]

    An F, Hou J, Liu J, Qian B, Lu W 2023 Int. J. Plast. 160 103509

    [16]

    Yang D C, Jo Y H, Ikeda Y, Körmann F, Sohn S S 2021 J. Mater. Sci. Technol. 90 159

    [17]

    Liu J P, Chen H, Zhang C, Yang Z G, Zhang Y, Dai L H 2023Acta Metall. Sin. 59 727(in Chinese)[刘俊鹏,陈浩,张弛,杨志刚,张勇,戴兰宏2023 金属学报 59 727]

    [18]

    Wang M, Li T, Wang J, Li G, Cheng C, Zheng Y, Fu Y, Ni Y 2023 Mater. Today Commun. 36 106822

    [19]

    Hu M-l, Song W-d, Duan D-b, Wu Y 2020 Int. J. Mech. Sci. 182 105738

    [20]

    Yeh J-W 2015 JOM 67 2254

    [21]

    Li N, Chen W, He J, Gu J, Wang Z, Li Y, Song M 2021 Mater.s Sci. Eng. A 827 142048

    [22]

    Chen Y, Li Y, Cheng X, Wu C, Cheng B, Xu Z 2018 Materials (Basel) 11 208

    [23]

    Jiao Z M, Ma S G, Chu M Y, Yang H J, Wang Z H, Zhang Y, Qiao J W 2015 J. Mater. Eng. Perform. 25 451

    [24]

    Wang X, Zhao Y, Zhou J, Xue Y, Yuan F, Ma L, Cao T, Wang L 2019 Mater. Trans. 60 929

    [25]

    Zhang S, Wang Z, Yang H J, Qiao J W, Wang Z H, Wu Y C 2020 Intermetallics 121 106699

    [26]

    Zhong X, Zhang Q, Xie J, Wu M, Jiang F, Yan Y, Wang Z 2021 Mater. Sci. Eng. A 812 141147

    [27]

    Moon J, Hong S I, Bae J W, Jang M J, Yim D, Kim H S 2017 Mater. Res. Lett. 5 472

    [28]

    Pan X, Wang L, Xue L, Sabbaghian M, Lu P, Wu W, Huang G, Xing B, Wang H 2022 J. Mater. Res. Technol. 19 1627

    [29]

    Tian J, Tang K, Wu Y K, Cao T H, Pang J B, Jiang F 2021 Mater. Sci. Eng. A 811 141054

    [30]

    Li J, Fang Q, Liu B, Liu Y 2018 Acta Mater. 147 35

    [31]

    Li Z, Pradeep K G, Deng Y, Raabe D, Tasan C C 2016 Nature 534 227

    [32]

    Liu S F, Wu Y, Wang H T, Lin W T, Shang Y Y, Liu J B, An K, Liu X J, Wang H, Lu Z P 2019 J. Alloys Compd. 792 444

    [33]

    Tu J, Yang W-h, Xu K, Zhou Z-m, Dou Y-c, Wang Y-l 2021 Mater. Lett. 305 130770

    [34]

    Laplanche G, Kostka A, Reinhart C, Hunfeld J, Eggeler G, George E P 2017 Acta Mater. 128 292

    [35]

    Cheng G, Shi Y, Wang Y, Zhang F, Li R, Zhou Y, Wu Z, Ma C, Lei Z, Lu Z 2024 Acta Mater. 271 119903

    [36]

    Wang Z, Lu W, Zhao H, Liebscher C H, He J, Ponge D, Raabe D, Li Z 2020 Sci. Adv. 6 eaba9543

    [37]

    Tang Y, Wang R, Xiao B, Zhang Z, Li S, Qiao J, Bai S, Zhang Y, Liaw P K 2023 Prog. Mater Sci. 135 101090

    [38]

    Huang A, Fensin S J, Meyers M A 2023 J. Mater. Res. Technol. 22 307

    [39]

    Moon J, Hong S I, Seol J B, Bae J W, Park J M, Kim H S 2019 Mater. Res. Lett. 7 503

    [40]

    Malka-Markovitz A, Devincre B, Mordehai D 2021 Scr. Mater. 190 7

    [41]

    Gutierrez-Urrutia I, Raabe D 2012 Acta Mater. 60 5791

    [42]

    Srivastava K, Weygand D, Caillard D, Gumbsch P 2020 Nat. Commun. 11 5098

    [43]

    Sun J, Zhang L, Huang Y, Chen B, Zhou J, Liu W, Ma Y 2023 Int. J. Refract. Met. Hard Mater 116 106363

    [44]

    Wang F, Song M, Elkot M N, Yao N, Sun B, Song M, Wang Z, Raabe D 2024 Science 384 1017

    [45]

    Sonkusare R, Jain R, Biswas K, Parameswaran V, Gurao N P 2020 J. Alloys Compd. 823 153763

    [46]

    Shen S, Wu C, Xie P, Liu Y 2022 Acta Metal. Sin.(English Letters) 35 1825

    [47]

    Wang Z, Lu W, An F, Song M, Ponge D, Raabe D, Li Z 2022 Nat. Commun. 13

  • [1] 杨宇贤, 王镇华, 王清, 唐才宇, 万鹏, 曹达华, 董闯. 共格析出强化的超高强度马氏体时效不锈钢组织和力学性能.  , doi: 10.7498/aps.74.20241483
    [2] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究.  , doi: 10.7498/aps.72.20221621
    [3] 张逸凡, 任卫, 王伟丽, 丁书剑, 李楠, 常亮, 周倩. 机器学习结合固溶强化模型预测高熵合金硬度.  , doi: 10.7498/aps.72.20230646
    [4] 王凯乐, 杨文奎, 史新成, 侯华, 赵宇宏. 相场法研究AlxCuMnNiFe高熵合金富Cu相析出机理.  , doi: 10.7498/aps.72.20222439
    [5] 蒋新安, 赵宇宏, 杨文奎, 田晓林, 侯华. 相场法研究Fe84Cu15Mn1合金富Cu相析出的内磁能作用机理.  , doi: 10.7498/aps.71.20212087
    [6] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究.  , doi: 10.7498/aps.71.20221621
    [7] 安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋. 尺寸依赖的CoCrFeNiMn晶体/非晶双相高熵合金塑性变形机制的分子动力学模拟.  , doi: 10.7498/aps.71.20221368
    [8] 郭震, 赵宇宏, 孙远洋, 赵宝军, 田晓林, 侯华. 相场法研究Fe-Cu-Mn-Al合金富Cu相析出机制.  , doi: 10.7498/aps.70.20201843
    [9] 李冬梅, 韩敬宇, 董闯. 高硬导电Cu-Ni-Si系铜合金强化相成分设计.  , doi: 10.7498/aps.68.20190593
    [10] 陈大伟, 王裴, 蔚喜军, 孙海权, 马东军. 稠密可压缩气粒两相流动中的等熵声速计算建模及物理规律.  , doi: 10.7498/aps.65.094702
    [11] 徐树杰, 师春生, 赵乃勤, 刘恩佐. 热加工过程中动态再结晶现象的多相场研究.  , doi: 10.7498/aps.61.116101
    [12] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算.  , doi: 10.7498/aps.60.107504
    [13] 胡琦, 张青川, 符师桦, 曹鹏涛, 龚明. 析出相在铝镁合金Portevin-Le Chatelier效应中的作用研究.  , doi: 10.7498/aps.60.096201
    [14] 刘红, 王西涛, 陈冷. 含Nb微合金钢应变诱导析出的模拟.  , doi: 10.7498/aps.58.151
    [15] 晋芳伟, 任忠鸣, 任维丽, 邓 康, 钟云波. 强梯度磁场下金属熔体中析出相晶粒迁移的动力学研究.  , doi: 10.7498/aps.56.3851
    [16] 孙 亮, 张青川, 晏顺平, 江慧丰, 刘颢文, 卢俊勇, 伍小平. Al-4.5wt%Cu合金中溶质原子及析出相对锯齿形屈服时空特性的影响.  , doi: 10.7498/aps.56.3411
    [17] 刘小娟, 周并举, 方卯发, 周清平. 双光子过程中任意初态原子的信息熵压缩.  , doi: 10.7498/aps.55.704
    [18] 柴志刚, 孟繁玲, 邹青. Al-Li合金时效-回归-再时效析出δ′相的行为.  , doi: 10.7498/aps.50.1401
    [19] 冯勋立, 何林生. 两能级原子在压缩真空态光场中双光子过程的细致平衡和熵的演化.  , doi: 10.7498/aps.46.1926
    [20] 张留琬, 蔡培新, 陈廷国. BPSCCO(2223)中类Ca2PbO4杂相析出的动力学研究.  , doi: 10.7498/aps.44.1148
计量
  • 文章访问数:  71
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-21

/

返回文章
返回
Baidu
map