搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铜氧化物超导体电荷序的共振X射线散射研究进展

陳螢 闫裕杰 武岳彤 王奇思

引用本文:
Citation:

铜氧化物超导体电荷序的共振X射线散射研究进展

陳螢, 闫裕杰, 武岳彤, 王奇思

Progress in resonant X-ray scattering studies of charge order in cuprate superconductors

CHAN Ying, YAN Yujie, WU Yuetong, WANG Qisi
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 非常规超导电性通常与一系列复杂的物质态相互竞争或共存. 在铜氧化物超导材料中, 存在自旋序、电荷序、赝能隙态和奇异金属相等多种物质态. 理解它们之间的关系是解决高温超导机理问题的基础. 最近的研究结果表明, 电荷序关联在铜氧化物体系中普遍存在, 并且覆盖了相图的广泛区域, 成为高温超导研究的重点. 本文总结了共振X 射线散射对铜氧化物中电荷序的研究进展, 聚焦于具有能量分辨的非弹性散射实验, 着重介绍了关于高温动态电荷序关联的研究, 以及结合单轴应力对电荷序进行调控的工作. 基于这些结果, 本文讨论了铜氧化物电荷序的微观机制、结构和对称性, 以及电荷序对超导和正常态的可能影响, 并对未来的研究方向进行了展望.
    Unconventional superconductivity often emerges in proximity to various competing or coexisting states. In cuprate superconductors, these states include spin order, charge order, the pseudogap state, and the strange metal phase. A comprehensive understanding of their relationship is fundamental to establishing the mechanism of high-temperature superconductivity. While spin dynamics in cuprates has been extensively investigated using inelastic neutron scattering, charge correlations remain much less understood. The recent advancement of resonant X-ray scattering (RXS) has enabled the detection of charge correlations with unprecedented sensitivity. A series of RXS studies have revealed the universal existence of charge correlations in cuprate materials, which extend across a wide range of the phase diagram. Resonant inelastic X-ray scattering (RIXS) experiments further unveiled the dynamical behaviors of charge order. These findings highlight the important influence of charge correlations on the properties of cuprates. In this article, we review the latest progress in the study of charge order in cuprates using RXS, with a particular emphasis on RIXS experiments. Our focus includes recent works on dynamical charge correlations at high temperature, and uniaxial strain tuning of charge order. We discuss topics including the underlying interactions, microscopic structure and symmetry, and possible influence of charge order on both the superconducting and normal states.
  • 图 1  空穴型掺杂铜氧化物超导体的典型相图. 灰色长虚线标记赝能隙出现的温度$ T^* $. 灰色短虚线指示奇异金属和费米液体相的过渡区域. 灰绿色阴影示意电荷密度涨落出现的区域. AF表示反铁磁有序

    Fig. 1.  Typical phase diagram for hole-doped cuprates. The gray dashed line marks the pseudogap onset temperature $T^* $. The gray dotted line indicates the crossover from the strange metal phase to the Fermi liquid state.

    图 2  X射线散射原理示意图. (a) 散射几何. (b) 共振X射线散射过程[19]. 共振X射线将芯电子激发至价带未占据态, 使体系短暂处在具有芯空穴和激发价电子的中间态, 随后占据态的电子返回填充芯电子并发射出X射线

    Fig. 2.  Schematic illustration of the principle of X-ray scattering. (a) Scattering geometry. (b) The process of resonant X-ray scattering[19]. Upon the absorption of an X-ray photon, a core electron is promoted to the valence state, creating a core hole and an excited valence electron in the intermediate state. In the final state, a valence electron fills the core hole, accompanied by the emission of an X-ray photon.

    图 3  关联电子体系中元激发及其特征能量尺度示意图. 利用RIXS的能量分辨可以区分准弹性与非弹性散射贡献, 从而实现对电荷序的灵敏探测. 弹性散射的能量宽度取决于仪器的分辨率

    Fig. 3.  Schematic illustration of the energy scales of elementary excitations in correlated electron systems. The energy resolution of RIXS allows for the separation of elastic from inelastic scattering processes, enhancing the sensitivity in probing charge order. The energy width of the elastic line is determined by the instrumental energy resolution.

    图 4  中子散射在Nd-LSCO中观测到的条纹序衍射峰[24]. (a) CuO2平面内自旋-电荷条纹模型示意图. 圆圈表示铜的位置. 箭头代表铜上的自旋. 灰色圆圈指示空穴掺杂位置. (b) 倒空间$ (H, K, 0) $ 面内自旋和电荷序的衍射峰 (实心圆), 以及晶格的布拉格峰 (空心圆). (c, d) 中子散射测量到的(c)自旋序和(d)电荷序衍射峰. 动量空间中的扫描方向如图(b)中箭头所示

    Fig. 4.  Neutron scattering observation of stripe-order reflections[24]. (a) Schematic illustration of the stripe pattern in the CuO2 plane. Circles denote the Cu sites. Arrows indicate the spins and gray circles indicate the doped holes. (b) Illustration of the $ (H, K, 0) $ plane in the reciprocal space, where spin and charge diffraction peaks were scanned and displayed in (c) and (d), respectively.

    图 5  铜氧化物体系中电荷序(a)及低能自旋涨落或自旋序(b)波矢随掺杂演化关系. 数据来自X射线或中子散射的倒空间测量. 电荷序测量结果来自文献[26-52]. 自旋序或低能自旋涨落测量结果来自文献[24,26,29,53-62]

    Fig. 5.  Doping evolution of wave vectors associated with (a) charge and (b) low-energy spin fluctuations for hole-doped cuprates, determined from X-ray or neutron scattering experiments. Data in (a) are taken from Refs. [26-52]. Data in (b) are taken from Refs. [24,26,29,53-62].

    图 6  Bi2201体系中电荷序和赝能隙态下“费米弧”的嵌套[41]. (a) Bi2201中共振X射线测量得到的电荷序衍射峰. (b) 铜$ L_3 $边电荷序的共振行为. (c) ARPES数据显示电荷序波矢量连接费米弧尖端

    Fig. 6.  Charge order and nesting of Fermi arc tips in the pseudogap state of Bi2201[41]. (a) Charge order peak in Bi2201 measured by REXS (b) Resonant behavior of charge order at the Cu $L_3 $-edge. (c) ARPES data showing charge ordering wave vector connects the Fermi arc-tips.

    图 7  YBCO和Bi2201中电荷序的单向结构[73,74]. (a) YBCO中电荷序的动量结构示意图. 左右插图分别展示了HK方向上电荷序峰部分方位角下的RXS动量扫描. (b) K方向电荷序峰强随方位角α的变化. 黑色横线表示峰宽$ \Delta Q $. (c) YBa2Cu3$ \text{O}_{6.51} $ (Y651), YBa2Cu3$ \text{O}_{6.67} $ (Y667) 和 YBa2Cu3$ \text{O}_{6.75} $ (Y675) 中$ \Delta Q $随方位角α变化的极坐标图[73]. (d) Bi2201的转角RIXS实验示意图. 通过改变样品面内转角ϕ和面外转角θ实现对电荷序峰从不同方位角α进行扫描. (e) 电荷序峰沿不同角度α的动量宽度表现出各向异性[74]

    Fig. 7.  Unidirectional charge order in YBCO and Bi2201[73,74]. (a) Schematic of the momentum structure of charge order in YBCO. Left and right insets display RXS momentum scans along H and K directions at selected azimuthal angles α, respectively. (b) Intensity of the charge order peak along K as a function of azimuthal angle. Black bars indicate the peak width $ \Delta Q $. (c) Polar plots of $ \Delta Q $ versus α for YBa2Cu3$ \text{O}_{6.51} $ (Y651), YBa2Cu3$ \text{O}_{6.67} $ (Y667), and YBa2Cu3$ \text{O}_{6.75} $ (Y675)[73]. (d) Schematic of the angular-dependent RIXS experiment on Bi2201. The charge order is scanned at different azimuthal angles α by varying the in-plane and out-of-plane sample rotation angle ϕ and θ. (e) Scans at different α reveal the anisotropic structure of the charge order peaks[74].

    图 8  电荷序的轨道对称性[75,76]. (a) 共振X射线散射实验及电荷序不同轨道对称性示意图. (b) LBCO[75] 与 (c) YBCO[76]中不同极化入射光下电荷序强度的方位角依赖及模型比较[74]

    Fig. 8.  Orbital symmetry of charge order[75,76]. (a) Schematics of the RXS geometry and different orbital symmetries of charge order. (b, c) Intensity of the charge order peak as a function of azimuthal angle ϕ using different incident light polarizations for (b) LBCO[75] and (c) YBCO[76].

    图 9  条纹序铜氧材料的高温电荷关联[28]. (a), (b) RIXS测量得到的$ 1/8 $空穴掺杂Eu-LSCO中不同温度下的电荷序峰. (c) Eu-LSCO中电荷序峰强的温度依赖. 在20 K以上峰强正比于$ T^{-2} $ (灰色虚线). 插图中$ T_s $和$ T^{*} $ 分别代表低温四方结构相和赝能隙态的起始温度. (d) 镧214体系中条纹电荷序峰强与关联长度的关系

    Fig. 9.  High-temperature charge correlations in stripe-ordered cuprates[28]. (a), (b) Charge order peak in Eu-LSCO at various temperatures measured by RIXS. (c) Temperature evolution of the charge order peak amplitude, which decays roughly as $T^{-2} $ (gray dashed line). (d) Relationship between charge order peak amplitude and correlation length in La-214 compounds.

    图 10  镧系铜氧材料中的短程电荷关联[34]. (a) 不同能量分辨率RIXS对LSCO $ x = 0.145 $测量得到的能谱. 下图中更高分辨率使得声子和电荷序的贡献得以区分. (b), (c) LSCO $ x = 0.145 $ 和 $ x = 0.16 $中电荷序的温度依赖

    Fig. 10.  Short-range charge correlations in La-based cuprates[34]. (a), (b) RIXS spectra on LSCO $x = 0.145$ obtained with different energy resolutions. The improved resolution in (b) allows for resolving the phonon branch. (c), (d) Temperature dependence of charge order in LSCO $x = 0.145$ and $x = 0.16$.

    图 11  电荷序有关的RIXS声子异常[19,111]. (a), (b) Eu-LSCO中15 K和200 K时电荷序波矢附近的RIXS能谱. 低温下零能量附近的信号峰来自电荷序. 黑色圆圈标记了键伸缩(bond-stretching)声子位置. (c)—(f) Eu-LSCO中电荷序波矢附近的RIXS声子软化及强度增强[19]. (g), (h) Bi2201 中电荷序波矢附近的铜L边和氧K边RIXS能谱. 氧K边具有更高能量分辨率, 因此可以分辨键伸缩和更低能量的键屈曲(bond-buckling)声子, 但是能覆盖的动量范围更小. (i)—(l) Bi2201中的RIXS声子软化及强度异常[111]

    Fig. 11.  RIXS phonon anomaly associated with charge order[19,111]. (a), (b) RIXS spectra around the charge ordering wave vector in Eu-LSCO at 15 K and 200 K. The intense elastic peak at low temperature originates from charge order. Black dots mark the bond-stretching phonon position. (c)–(f) RIXS phonon energy softening and intensity enhancement near the charge ordering wave vector in Eu-LSCO[19]. (g), (h) Cu L-edge and O K-edge RIXS spectra around the charge ordering wave vector in Bi2201. (i)–(l) RIXS phonon softening and intensity anomaly in Bi2201[111].

    图 12  电荷密度涨落[112,113]. (a) YBCO和Bi2212中$ (H, 0) $和$ (H, H) $方向RIXS信号作差. (b) 总结YBCO, NBCO及Bi2212体系中RIXS结果得到的电荷密度涨落的特征温度与空穴掺杂量的关系[112]. (c) LSCO $ x = 0.15 $中电荷序波矢附近不同温度下的RIXS 能谱. $ 100 $ meV以下可以分辨三支声子及更低能量的电荷激发模式. (d) LSCO $ x = 0.15 $中电荷激发的强度、特征能量及寿命倒数的温度依赖[113]

    Fig. 12.  Charge density fluctuations[112,113]. (a) Intensity difference between RIXS spectra taken along $ (H, 0) $ and $ (H, H) $ directions in YBCO and Bi2212. (b) Doping evolution of the characteristic temperature of charge density fluctuations obtained from RIXS data on YBCO, NBCO, and Bi2212[112]. (c) RIXS spectra around the charge ordering wave vector in LSCO $ x = 0.15 $ at different temperatures. (d) The intensity, characteristic energy, and inverse lifetime of the charge excitation as a function of temperature in in LSCO $ x = 0.15 $[113].

    图 13  共振X射线散射用到的单轴应力装置. 基于(a)压电陶瓷[124]和(b), (c)机械螺丝[126,127]的不同设计均可以原位施加单轴应力

    Fig. 13.  Uniaxial strain devices used in resonant X-ray scattering experiments. Both (a) the piezoelectric-based[124] and (b, c) the screw-based[126,127] devices can apply uniaxial strain in-situ.

    图 14  YBCO中二维电荷序的应力响应[124]. (a) H 和 (b) K 方向电荷序对沿a方向施加应力的响应. (c) H 和 (d) K 方向电荷序对沿b方向施加应力的响应. (e), (f) 单轴应力下电荷序畴的实空间示意图

    Fig. 14.  Strain response of the 2D charge order in YBCO[124]. (a), (b) Evolution of the charge order peaks along (a) H and (b) K directions under the a-axis compression. (c), (d) The charge order peaks along (c) H and (d) K directions under the b-axis compression. (e), (f) Schematics of the real-space charge order domains under uniaxial strain.

    图 15  LSCO中应力引发的条纹序旋转[126]. (a) 镧214铜氧材料结构示意图[28]. 左图为高温四方 (HTT) 相结构. 右图示意LTO与LTT相内铜氧八面体的旋转畸变. (b) 常压及单轴压下LSCO中电荷序的动量结构示意图. 橙色和红色实线分别示意(c)和(d)中动量空间扫描方向. (c), (d) 电荷序峰的(c)横向与(d)纵向动量依赖随外加应力的变化. (e) 电荷序关联长度和 (f) 非公度波矢随外加应力的变化关系

    Fig. 15.  Strain-induced stripe order rotation in LSCO[126]. (a) Schematic illustration of the crystal structure of La-based cuprates[28]. Left: structure of the HTT phase; right: distortion of the CuO6 octahedra in the LTO and LTT phases. (b) Momentum structure of the charge order peak in LSCO under ambient and compressive strain. The orange and red solid lines indicate the momentum scan directions in (c) and (d), respectively. (c), (d) Strain evolution of the (c) transverse and (d) longitudinal momentum scans of charge order peak. (e) Correlation length and (f) incommensurability of charge order as a function of applied strain.

    图 16  LTT结构中条纹电荷序对单轴应力的响应[130,131]. (a), (b) 对Nd-LSCO沿面内Cu-O键方向施加拉伸应力时LTT结构相变及电荷序的变化[130]. (c)—(f) 沿面内Cu-O键方向施加压缩应力时Nd-LSCO中电荷序的变化[131]

    Fig. 16.  Response of charge-stripe order to uniaxial strain applied in the LTT structure[130,131]. (a), (b) Evolution of charge order and LTT phase in Nd-LSCO upon the application of tensile strain along the in-plane Cu-O bond direction[130]. (c)–(f) Response of charge order in Nd-LSCO to compressive strain applied along the Cu-O bond direction[131].

    图 17  LSCO中电荷序及低能激发的应力响应[127]. (a) 代表性氧K边RIXS谱及拟合. (b) 未施加应力时的动量依赖RIXS激发谱. (c), (d) 外加面内Cu-O键方向压缩应力时沿(c) H (垂直于应力) 及(d) K (平行于应力) 方向的动量依赖RIXS激发谱. (b)—(d)中已减去拟合得到的弹性散射信号. (e) 键伸缩声子和低能电荷激发模式的色散关系的应力依赖. (f)—(h) 电荷序峰及低能电荷激发强度的应力依赖

    Fig. 17.  Strain response of charge order and low-energy excitations in LSCO[127]. (a) Representative RIXS spectrum fitting. (b) Momentum-dependent RIXS excitations without strain application. (c), (d) RIXS excitation spectra along (c) H (perpendicular to strain) and K (parallel to strain) directions under compressive strain applied along the in-plane Cu-O bond direction. The fitted elastic signal has been removed in (b)–(d). (e) Strain dependence of the bond-stretching phonon and low-energy charge excitation dispersion. (f)–(h) Strain dependence of the charge order and charge excitation intensities.

    Baidu
  • [1]

    Keimer B, Kivelson S A, Norman M R, Uchida S, Zaanen J 2015 Nature 518 179Google Scholar

    [2]

    Chaussy J, Haen P, Lasjaunias J C, Monceau P, Waysand G, Waintal A, Meerschaut A, Molinié P, Rouxel J 1976 Solid State Commun. 20 759Google Scholar

    [3]

    Grüner G 1988 Rev. Mod. Phys. 60 1129Google Scholar

    [4]

    Gressier P, Guemas L, Meerschaut A 1982 Acta Cryst. B 38 2877Google Scholar

    [5]

    Weber F, Rosenkranz S, Castellan J P, Osborn R, Hott R, Heid R, Bohnen K P, Egami T, Said A H, Reznik D 2011 Phys. Rev. Lett. 107 107403Google Scholar

    [6]

    Harper J M E, Geballe T H, DiSalvo F J 1977 Phys. Rev. B 15 2943Google Scholar

    [7]

    Peierls R E 1994 Quantum Theory of Solids (Oxford Univ Press

    [8]

    Grüner G 1994 Density Waves in Solids (Addison-Wesley

    [9]

    Johannes M D, Mazin I I 2008 Phys. Rev. B 77 165135Google Scholar

    [10]

    Zhu X, Cao Y, Zhang J, Plummer E W, Guo J 2015 PNAS 112 2367Google Scholar

    [11]

    Jérome D, Rice T M, Kohn W 1967 Phys. Rev. 158 462Google Scholar

    [12]

    Rossnagel K, Kipp L, Skibowski M 2002 Phys. Rev. B 65 235101Google Scholar

    [13]

    Bel R, Behnia K, Berger H 2003 Phys. Rev. Lett. 91 066602Google Scholar

    [14]

    Hwang J, Ruan W, Chen Y, Tang S, Crommie M F, Shen Z X, Mo S K 2024 Rep. Prog. Phys. 87 044502Google Scholar

    [15]

    Hoffman J E, Hudson E W, Lang K M, Madhavan V, Eisaki H, Uchida S, Davis J C 2002 Science 295 466Google Scholar

    [16]

    Blinc R 1981 Phys. Rep. 79 331Google Scholar

    [17]

    Wu T, Mayaffre H, Krämer S, Horvatic M, Berthier C, Hardy W N, Liang R, Bonn D A, Julien M 2011 Nature 477 191Google Scholar

    [18]

    Ament L J P, van Veenendaal M, Devereaux T P, Hill J P, van den Brink J 2011 Rev. Mod. Phys. 83 705Google Scholar

    [19]

    Wang Q, von Arx K, Horio M, Mukkattukavil D J, Küspert J, Sassa Y, Schmitt T, Nag A, Pyon S, Takayama T, Takagi H, Garcia-Fernandez M, Zhou K J, Chang J 2021 Sci. Adv. 7 eabg7394Google Scholar

    [20]

    Schülke W 2007 Electron Dynamics by Inelastic X-ray Scattering (Oxford Universtiy Press

    [21]

    Moretti Sala M, Bisogni V, Aruta C, Balestrino G, Berger H, Brookes N B, Luca G M d, Di Castro D, Grioni M, Guarise M, Medaglia P G, Miletto Granozio F, Minola M, Perna P, Radovic M, Salluzzo M, Schmitt T, Zhou K J, Braicovich L, Ghiringhelli G 2011 New J. Phys. 13 043026Google Scholar

    [22]

    Brink J V d, Veenendaal M V 2006 Europhys. Lett. 73 121Google Scholar

    [23]

    Devereaux T P, Shvaika A M, Wu K, Wohlfeld K, Jia C J, Wang Y, Moritz B, Chaix L, Lee W S, Shen Z X, Ghiringhelli G, Braicovich L 2016 Phys. Rev. X 6 041019

    [24]

    Tranquada J M, Sternlieb B J, Axe J D, Nakamura Y, Uchida S 1995 Nature 375 561Google Scholar

    [25]

    de Groot F M F, Haverkort M W, Elnaggar H, Juhin A, Zhou K J, Glatzel P 2024 Nat. Rev. Methods Primers 4 45Google Scholar

    [26]

    Hücker M, V Zimmermann M, Gu G D, Xu Z J, Wen J S, Xu G, Kang H J, Zheludev A, Tranquada J M 2011 Phys. Rev. B 83 104506Google Scholar

    [27]

    Fink J, Soltwisch V, Geck J, Schierle E, Weschke E, Büchner B 2011 Phys. Rev. B 83 092503Google Scholar

    [28]

    Wang Q, Horio M, von Arx K, Shen Y, John Mukkattukavil D, Sassa Y, Ivashko O, Matt C E, Pyon S, Takayama T, Takagi H, Kurosawa T, Momono N, Oda M, Adachi T, Haidar S M, Koike Y, Tseng Y, Zhang W, Zhao J, Kummer K, Garcia-Fernandez M, Zhou K J, Christensen N B, Rønnow H M, Schmitt T, Chang J 2020 Phys. Rev. Lett. 124 187002Google Scholar

    [29]

    Lee S, Huang E W, Johnson T A, Guo X, Husain A A, Mitrano M, Lu K, Zakrzewski A V, de la Peña G A, Peng Y, Huang H, Lee S J, Jang H, Lee J S, Joe Y I, Doriese W B, Szypryt P, Swetz D S, Chi S, Aczel A A, MacDougall G J, Kivelson S A, Fradkin E, Abbamonte P 2022 PNAS 119 e2119429119Google Scholar

    [30]

    Wilkins S B, Dean M P M, Fink J, Hücker M, Geck J, Soltwisch V, Schierle E, Weschke E, Gu G, Uchida S, Ichikawa N, Tranquada J M, Hill J P 2011 Phys. Rev. B 84 195101Google Scholar

    [31]

    Gupta N K, McMahon C, Sutarto R, Shi T, Gong R, Wei H I, Shen K M, He F, Ma Q, Dragomir M, Gaulin B D, Hawthorn D G 2021 PNAS 118 e2106881118Google Scholar

    [32]

    Christensen N B, Chang J, Larsen J, Fujita M, Oda M, Ido M, Momono N, Forgan E M, Holmes A T, Mesot J, Huecker M, v Zimmermann M 2014 arXiv: 1404.3192 [cond-mat.supr-con] DOI https://doi.org/10.48550/arXiv.1404.3192.

    [33]

    Croft T P, Lester C, Senn M S, Bombardi A, Hayden S M 2014 Phys. Rev. B 89 224513Google Scholar

    [34]

    von Arx K, Wang Q, Mustafi S, Mazzone D G, Horio M, Mukkattukavil D J, Pomjakushina E, Pyon S, Takayama T, Takagi H, Kurosawa T, Momono N, Oda M, Brookes N B, Betto D, Zhang W, Asmara T C, Tseng Y, Schmitt T, Sassa Y, Chang J 2023 npj Quantum Mater. 8 7Google Scholar

    [35]

    Achkar A J, Sutarto R, Mao X, He F, Frano A, Blanco-Canosa S, Le Tacon M, Ghiringhelli G, Braicovich L, Minola M, Moretti Sala M, Mazzoli C, Liang R, Bonn D A, Hardy W N, Keimer B, Sawatzky G A, Hawthorn D G 2012 Phys. Rev. Lett. 109 167001Google Scholar

    [36]

    Chang J, Blackburn E, Holmes A T, Christensen N B, Larsen J, Mesot J, Liang R, Bonn D A, Hardy W N, Watenphul A, v Zimmermann M, Forgan E M, Hayden S M 2012 Nat. Phys. 8 871Google Scholar

    [37]

    Ghiringhelli G, Tacon M L, Minola M, Blanco-Canosa S, Mazzoli C, Brookes N B, Luca G M D, Frano A, Hawthorn D G, He F, Loew T, Sala M M, Peets D C, Salluzzo M, Schierle E, Sutarto R, Sawatzky G A, Weschke E, Keimer B, Braicovich L 2012 Science 337 821Google Scholar

    [38]

    Hücker M, Christensen N B, Holmes A T, Blackburn E, Forgan E M, Liang R, Bonn D A, Hardy W N, Gutowski O, Zimmermann M V, Hayden S M, Chang J 2014 Phys. Rev. B 90 054514Google Scholar

    [39]

    Blackburn E, Chang J, Hücker M, Holmes A T, Christensen N B, Liang R, Bonn D A, Hardy W N, Rütt U, Gutowski O, Zimmermann M V, Forgan E M, Hayden S M 2013 Phys. Rev. Lett. 110 137004Google Scholar

    [40]

    Blanco-Canosa S, Frano A, Schierle E, Porras J, Loew T, Minola M, Bluschke M, Weschke E, Keimer B, Le Tacon M 2014 Phys. Rev. B 90 054513Google Scholar

    [41]

    Comin R, Frano A, Yee M M, Yoshida Y, Eisaki H, Schierle E, Weschke E, Sutarto R, He F, Soumyanarayanan A, He Y, Le Tacon M, Elfimov I S, Hoffman J E, Sawatzky G A, Keimer B, Damascelli A 2014 Science 343 390Google Scholar

    [42]

    Peng Y Y, Fumagalli R, Ding Y, Minola M, Caprara S, Betto D, Bluschke M, De Luca G M, Kummer K, Lefrançois E, Salluzzo M, Suzuki H, Le Tacon M, Zhou X J, Brookes N B, Keimer B, Braicovich L, Grilli M, Ghiringhelli G 2018 Nat. Mater. 17 697Google Scholar

    [43]

    Zhang S, Li Q, Zou C, Huang H Y, Singh A, Yan H, Zhou X, Huang D J, Peng Y 2024 Phys. Rev. B 110 125108Google Scholar

    [44]

    da Silva Neto E H, Aynajian P, Frano A, Comin R, Schierle E, Weschke E, Gyenis A, Wen J, Schneeloch J, Xu Z, Ono S, Gu G, Le Tacon M, Yazdani A 2014 Science 343 393Google Scholar

    [45]

    Chaix L, Ghiringhelli G, Peng Y Y, Hashimoto M, Moritz B, Kummer K, Brookes N B, He Y, Chen S, Ishida S, Yoshida Y, Eisaki H, Salluzzo M, Braicovich L, Shen Z X, Devereaux T P, Lee W S 2017 Nat. Phys. 13 952Google Scholar

    [46]

    Lee W S, Zhou K J, Hepting M, Li J, Nag A, Walters A C, Garcia-Fernandez M, Robarts H C, Hashimoto M, Lu H, Nosarzewski B, Song D, Eisaki H, Shen Z X, Moritz B, Zaanen J, Devereaux T P 2020 Nat. Phys. 17 53

    [47]

    Boschini F, Minola M, Sutarto R, Schierle E, Bluschke M, Das S, Yang Y, Michiardi M, Shao Y C, Feng X, Ono S, Zhong R D, Schneeloch J A, Gu G D, Weschke E, He F, Chuang Y D, Keimer B, Damascelli A, Frano A, da Silva Neto E H 2021 Nat. Commun. 12 597Google Scholar

    [48]

    Lu H, Hashimoto M, Chen S D, Ishida S, Song D, Eisaki H, Nag A, Garcia-Fernandez M, Arpaia R, Ghiringhelli G, Braicovich L, Zaanen J, Moritz B, Kummer K, Brookes N B, Zhou K J, Shen Z X, Devereaux T P, Lee W S 2022 Phys. Rev. B 106 155109Google Scholar

    [49]

    Zou C, Choi J, Li Q, Ye S, Yin C, Garcia-Fernandez M, Agrestini S, Qiu Q, Cai X, Xiao Q, Zhou X, Zhou K J, Wang Y, Peng Y 2024 Nat. Commun. 15 7739Google Scholar

    [50]

    Tabis W, Li Y, Tacon M L, Braicovich L, Kreyssig A, Minola M, Dellea G, Weschke E, Veit M J, Ramazanoglu M, Goldman A I, Schmitt T, Ghiringhelli G, Barišić N, Chan M K, Dorow C J, Yu G, Zhao X, Keimer B, Greven M 2014 Nat. Commun. 5 5875Google Scholar

    [51]

    Campi G, Bianconi A, Poccia N, Bianconi G, Barba L, Arrighetti G, Innocenti D, Karpinski J, Zhigadlo N D, Kazakov S M, Burghammer M, Zimmermann M v, Sprung M, Ricci A 2015 Nature 525 359Google Scholar

    [52]

    Tabis W, Yu B, Bialo I, Bluschke M, Kolodziej T, Kozlowski A, Blackburn E, Sen K, Forgan E M, Zimmermann M v, Tang Y, Weschke E, Vignolle B, Hepting M, Gretarsson H, Sutarto R, He F, Le Tacon M, Barišić N, Yu G, Greven M 2017 Phys. Rev. B 96 134510Google Scholar

    [53]

    Tranquada J M, Axe J D, Ichikawa N, Moodenbaugh A R, Nakamura Y, Uchida S 1997 Phys. Rev. Lett. 78 338Google Scholar

    [54]

    Yamada K, Lee C H, Kurahashi K, Wada J, Wakimoto S, Ueki S, Kimura H, Endoh Y, Hosoya S, Shirane G, Birgeneau R J, Greven M, Kastner M A, Kim Y J 1998 Phys. Rev. B 57 6165Google Scholar

    [55]

    Fujita M, Yamada K, Hiraka H, Gehring P M, Lee S H, Wakimoto S, Shirane G 2002 Phys. Rev. B 65 064505Google Scholar

    [56]

    Matsushita H, Kimura H, Fujita M, Yamada K, Hirota K, Endoh Y 1999 J. Phys. Chem. Solids 60 1071Google Scholar

    [57]

    Dai P, Mook H A, Hunt R D, Doğan F 2001 Phys. Rev. B 63 054525Google Scholar

    [58]

    Arai M, Nishijima T, Endoh Y, Egami T, Tajima S, Tomimoto K, Shiohara Y, Takahashi M, Garrett A, Bennington S M 1999 Phys. Rev. Lett. 83 608Google Scholar

    [59]

    Bourges P, Sidis Y, Fong H F, Regnault L P, Bossy J, Ivanov A, Keimer B 2000 Science 288 1234Google Scholar

    [60]

    Headings N S, Hayden S M, Kulda J, Babu N H, Cardwell D A 2011 Phys. Rev. B 84 104513Google Scholar

    [61]

    Haug D, Hinkov V, Sidis Y, Bourges P, Christensen N B, Ivanov A, Keller T, Lin C T, Keimer B 2010 New J. Phys. 12 105006Google Scholar

    [62]

    Enoki M, Fujita M, Nishizaki T, Iikubo S, Singh D K, Chang S, Tranquada J M, Yamada K 2013 Phys. Rev. Lett. 110 017004Google Scholar

    [63]

    Forgan E M, Blackburn E, Holmes A T, Briffa A K R, Chang J, Bouchenoire L, Brown S D, Liang R, Bonn D, Hardy W N, Christensen N B, Zimmermann M V, Hücker M, Hayden S M 2015 Nat. Commun. 6 10064Google Scholar

    [64]

    Abbamonte P 2006 Phys. Rev. B 74 195113Google Scholar

    [65]

    Oppliger J, Küspert J, Dippel A C, v Zimmermann M, Gutowski O, Ren X, Zhou X, Zhu Z, Frison R, Wang Q, Martinelli L, Biało I, Chang J 2025 Commun. Mater. 6 3Google Scholar

    [66]

    Comin R, Damascelli A 2016 Annu. Rev. Condens. Matter Phys. 7 369Google Scholar

    [67]

    de Groot F, Kotani A 2008 Core Level Spectroscopy of Solids (CRC Press

    [68]

    Wang Q, Mustafi S, Fogh E, Astrakhantsev N, He Z, Biało I, Chan Y, Martinelli L, Horio M, Ivashko O, Shaik N E, Arx K v, Sassa Y, Paris E, Fischer M H, Tseng Y, Christensen N B, Galdi A, Schlom D G, Shen K M, Schmitt T, Rønnow H M, Chang J 2024 Nat. Commun. 15 5348Google Scholar

    [69]

    Rossi M, Osada M, Choi J, Agrestini S, Jost D, Lee Y, Lu H, Wang B Y, Lee K, Nag A, Chuang Y D, Kuo C T, Lee S J, Moritz B, Devereaux T P, Shen Z X, Lee J S, Zhou K J, Hwang H Y, Lee W S 2022 Nat. Phys. 18 869Google Scholar

    [70]

    Tam C C, Choi J, Ding X, Agrestini S, Nag A, Wu M, Huang B, Luo H, Gao P, García-Fernández M, Qiao L, Zhou K J 2022 Nat. Mater. 21 1116Google Scholar

    [71]

    Krieger G, Martinelli L, Zeng S, Chow L E, Kummer K, Arpaia R, Moretti Sala M, Brookes N B, Ariando A, Viart N, Salluzzo M, Ghiringhelli G, Preziosi D 2022 Phys. Rev. Lett. 129 027002Google Scholar

    [72]

    Liu R, Zhang W, Wei Y, Tao Z, Asmara T C, Strocov V N, Schmitt T, Lu X 2023 arXiv: 2312.12749 [cond-mat.supr-con] DOI https://doi.org/10.48550/arXiv.2312.12749.

    [73]

    Comin R, Sutarto R, da Silva Neto E H, Chauviere L, Liang R, Hardy W N, Bonn D A, He F, Sawatzky G A, Damascelli A 2015 Science 347 1335Google Scholar

    [74]

    Choi J, Li J, Nag A, Pelliciari J, Robarts H, Tam C C, Walters A, Agrestini S, García-Fernández M, Song D, Eisaki H, Johnston S, Comin R, Ding H, Zhou K 2023 Adv. Mater. 36 2307515

    [75]

    Achkar A J, He F, Sutarto R, McMahon C, Zwiebler M, Hücker M, Gu G D, Liang R, Bonn D A, Hardy W N, Geck J, Hawthorn D G 2016 Nat. Mater. 15 616Google Scholar

    [76]

    McMahon C, Achkar A J, da Silva Neto E H, Djianto I, Menard J, He F, Sutarto R, Comin R, Liang R, Bonn D A, Hardy W N, Damascelli A, Hawthorn D G 2020 Sci. Adv. 6 eaay0345Google Scholar

    [77]

    Ruixian L, Qi T, Xingye L 2022 Sci. China Phys. Mech. Astron. 52 270005Google Scholar

    [78]

    Abbamonte P, Rusydi A, Smadici S, Gu G D, Sawatzky G A, Feng D L 2005 Nat. Phys. 1 155Google Scholar

    [79]

    Howald C, Eisaki H, Kaneko N, Greven M, Kapitulnik A 2003 Phys. Rev. B 67 014533Google Scholar

    [80]

    Tam C C, Zhu M, Ayres J, Kummer K, Yakhou-Harris F, Cooper J R, Carrington A, Hayden S M 2022 Nat. Commun. 13 570Google Scholar

    [81]

    da Silva Neto E H, Comin R, He F, Sutarto R, Jiang Y, Greene R L, Sawatzky G A, Damascelli A 2015 Science 347 282Google Scholar

    [82]

    da Silva Neto E H, Yu B, Minola M, Sutarto R, Schierle E, Boschini F, Zonno M, Bluschke M, Higgins J, Li Y, Yu G, Weschke E, He F, Le Tacon M, Greene R L, Greven M, Sawatzky G A, Keimer B, Damascelli A 2016 Sci. Adv. 2 e1600782Google Scholar

    [83]

    Atkinson W A, Kampf A P, Bulut S 2015 New J. Phys. 17 013025Google Scholar

    [84]

    Sachdev S, La Placa R 2013 Phys. Rev. Lett. 111 027202Google Scholar

    [85]

    Efetov K B, Meier H, Pépin C 2013 Nat. Phys. 9 442Google Scholar

    [86]

    Pépin C, de Carvalho V S, Kloss T, Montiel X 2014 Phys. Rev. B 90 195207Google Scholar

    [87]

    Jang H, Asano S, Fujita M, Hashimoto M, Lu D H, Burns C A, Kao C C, Lee J S 2017 Phys. Rev. X 7 041066

    [88]

    Yu B, Tabis W, Bialo I, Yakhou F, Brookes N B, Anderson Z, Tang Y, Yu G, Greven M 2020 Phys. Rev. X 10 021059

    [89]

    Kivelson S A, Bindloss I P, Fradkin E, Oganesyan V, Tranquada J M, Kapitulnik A, Howald C 2003 Rev. Mod. Phys. 75 1201Google Scholar

    [90]

    Hayden S M, Tranquada J M 2024 Annu. Rev. Condens. Matter Phys. 15 215Google Scholar

    [91]

    Mesaros A, Fujita K, Edkins S D, Hamidian M H, Eisaki H, Uchida S i, Davis J C S, Lawler M J, Kim E A 2016 PNAS 113 12661Google Scholar

    [92]

    Vinograd I, Zhou R, Hirata M, Wu T, Mayaffre H, Krämer S, Liang R, Hardy W N, Bonn D A, Julien M H 2021 Nat. Commun. 12 3274Google Scholar

    [93]

    Kohsaka Y, Taylor C, Fujita K, Schmidt A, Lupien C, Hanaguri T, Azuma M, Takano M, Eisaki H, Takagi H, Uchida S, Davis J C 2007 Science 315 1380Google Scholar

    [94]

    Fujita K, Hamidian M H, Edkins S D, Kim C K, Kohsaka Y, Azuma M, Takano M, Takagi H, Eisaki H, Uchida S i, Allais A, Lawler M J, Kim E A, Sachdev S, Davis J C S 2014 PNAS 111 E3026Google Scholar

    [95]

    Hamidian M H, Edkins S D, Kim C K, Davis J C, Mackenzie A P, Eisaki H, Uchida S, Lawler M J, Kim E A, Sachdev S, Fujita K 2015 Nat. Phys. 12 150

    [96]

    Wise W D, Boyer M C, Chatterjee K, Kondo T, Takeuchi T, Ikuta H, Wang Y, Hudson E W 2008 Nat. Phys. 4 696Google Scholar

    [97]

    LeBoeuf D, Krämer S, Hardy W N, Liang R, Bonn D A, Proust C 2012 Nat. Phys. 9 79

    [98]

    Comin R, Sutarto R, He F, da Silva Neto E H, Chauviere L, Fraño A, Liang R, Hardy W N, Bonn D A, Yoshida Y, Eisaki H, Achkar A J, Hawthorn D G, Keimer B, Sawatzky G A, Damascelli A 2015 Nat. Mater. 14 796Google Scholar

    [99]

    Vojta M, Rösch O 2008 Phys. Rev. B 77 094504Google Scholar

    [100]

    Li Q, Hücker M, Gu G D, Tsvelik A M, Tranquada J M 2007 Phys. Rev. Lett. 99 067001Google Scholar

    [101]

    Tranquada J M, Gu G D, Hücker M, Jie Q, Kang H J, Klingeler R, Li Q, Tristan N, Wen J S, Xu G Y, Xu Z J, Zhou J, v Zimmermann M 2008 Phys. Rev. B 78 174529Google Scholar

    [102]

    Agterberg D F, Davis J C S, Edkins S D, Fradkin E, Van Harlingen D J, Kivelson S A, Lee P A, Radzihovsky L, Tranquada J M, Wang Y 2020 Annu. Rev. Condens. Matter Phys. 11 231Google Scholar

    [103]

    Edkins S D, Kostin A, Fujita K, Mackenzie A P, Eisaki H, Uchida S, Sachdev S, Lawler M J, Kim E A, Séamus Davis J C, Hamidian M H 2019 Science 364 976Google Scholar

    [104]

    Blackburn E, Ivashko O, Campillo E, von Zimmermann M, Liang R, Bonn D A, Hardy W N, Chang J, Forgan E M, Hayden S M 2023 arXiv: 2310.18302 [cond-mat.supr-con] http://dx.doi.org/https://doi.org/10.48550/arXiv.2310.18302

    [105]

    Lee J S, Kivelson S A, Wang T, Ikeda Y, Taniguchi T, Fujita M, Kao C C 2023 arXiv: 2310.19907 [cond-mat.supr-con] http://dx.doi.org/https://doi.org/10.48550/arXiv.2310.19907

    [106]

    Kivelson S A, Fradkin E, Emery V J 1998 Nature 393 550Google Scholar

    [107]

    Wang Y, Chubukov A V 2015 Phys. Rev. B 92 125108Google Scholar

    [108]

    Castellani C, Di Castro C, Grilli M 1996 Z. Phys. B 103 137Google Scholar

    [109]

    Castellani C, Di Castro C, Grilli M 1995 Phys. Rev. Lett. 75 4650Google Scholar

    [110]

    Seibold G, Arpaia R, Peng Y Y, Fumagalli R, Braicovich L, Di Castro C, Grilli M, Ghiringhelli G C, Caprara S 2021 Commun. Phys. 4 7Google Scholar

    [111]

    Li J, Nag A, Pelliciari J, Robarts H, Walters A, Garcia-Fernandez M, Eisaki H, Song D, Ding H, Johnston S, Comin R, Zhou K J 2020 PNAS 117 16219Google Scholar

    [112]

    Arpaia R, Martinelli L, Sala M M, Caprara S, Nag A, Brookes N B, Camisa P, Li Q, Gao Q, Zhou X, Garcia-Fernandez M, Zhou K J, Schierle E, Bauch T, Peng Y Y, Di Castro C, Grilli M, Lombardi F, Braicovich L, Ghiringhelli G 2023 Nat. Commun. 14 7198Google Scholar

    [113]

    Huang H Y, Singh A, Mou C Y, Johnston S, Kemper A F, van den Brink J, Chen P J, Lee T K, Okamoto J, Chu Y Y, Li J H, Komiya S, Komarek A C, Fujimori A, Chen C T, Huang D J 2021 Phys. Rev. X 11 041038

    [114]

    Caprara S, Castro C D, Mirarchi G, Seibold G, Grilli M 2022 Commun. Phys. 5 10Google Scholar

    [115]

    Miao H, Lorenzana J, Seibold G, Peng Y Y, Amorese A, Yakhou-Harris F, Kummer K, Brookes N B, Konik R M, Thampy V, Gu G D, Ghiringhelli G, Braicovich L, Dean M P M 2017 PNAS 114 12430Google Scholar

    [116]

    Wen J J, Huang H, Lee S J, Jang H, Knight J, Lee Y S, Fujita M, Suzuki K M, Asano S, Kivelson S A, Kao C C, Lee J S 2019 Nat. Commun. 10 3269Google Scholar

    [117]

    Lin J Q, Miao H, Mazzone D G, Gu G D, Nag A, Walters A C, García-Fernández M, Barbour A, Pelliciari J, Jarrige I, Oda M, Kurosawa K, Momono N, Zhou K J, Bisogni V, Liu X, Dean M P M 2020 Phys. Rev. Lett. 124 207005Google Scholar

    [118]

    Miao H, Fabbris G, Koch R J, Mazzone D G, Nelson C S, Acevedo-Esteves R, Gu G D, Li Y, Yilimaz T, Kaznatcheev K, Vescovo E, Oda M, Kurosawa T, Momono N, Assefa T, Robinson I K, Bozin E S, Tranquada J M, Johnson P D, Dean M P M 2021 npj Quantum Mater. 6 31Google Scholar

    [119]

    Chen X M, Thampy V, Mazzoli C, Barbour A M, Miao H, Gu G D, Cao Y, Tranquada J M, Dean M P M, Wilkins S B 2016 Phys. Rev. Lett. 117 167001Google Scholar

    [120]

    Mitrano M, Lee S, Husain A A, Delacretaz L, Zhu M, de la Peña Munoz G, Sun S X L, Joe Y I, Reid A H, Wandel S F, Coslovich G, Schlotter W, van Driel T, Schneeloch J, Gu G D, Hartnoll S, Goldenfeld N, Abbamonte P 2019 Sci. Adv. 5 eaax3346Google Scholar

    [121]

    Peng Y Y, Husain A A, Mitrano M, Sun S X L, Johnson T A, Zakrzewski A V, MacDougall G J, Barbour A, Jarrige I, Bisogni V, Abbamonte P 2020 Phys. Rev. Lett. 125 097002Google Scholar

    [122]

    Arpaia R, Caprara S, Fumagalli R, De Vecchi G, Peng Y Y, Andersson E, Betto D, De Luca G M, Brookes N B, Lombardi F, Salluzzo M, Braicovich L, Di Castro C, Grilli M, Ghiringhelli G 2019 Science 365 906Google Scholar

    [123]

    Rossi M, Arpaia R, Fumagalli R, Moretti Sala M, Betto D, Kummer K, De Luca G M, van den Brink J, Salluzzo M, Brookes N B, Braicovich L, Ghiringhelli G 2019 Phys. Rev. Lett. 123 027001Google Scholar

    [124]

    Kim H H, Lefrançois E, Kummer K, Fumagalli R, Brookes N B, Betto D, Nakata S, Tortora M, Porras J, Loew T, Barber M E, Braicovich L, Mackenzie A P, Hicks C W, Keimer B, Minola M, Le Tacon M 2021 Phys. Rev. Lett. 126 037002Google Scholar

    [125]

    Kim H H, Souliou S M, Barber M E, Lefrançois E, Minola M, Tortora M, Heid R, Nandi N, Borzi R A, Garbarino G, Bosak A, Porras J, Loew T, König M, Moll P J W, Mackenzie A P, Keimer B, Hicks C W, Le Tacon M 2018 Science 362 1040Google Scholar

    [126]

    Wang Q, von Arx K, Mazzone D G, Mustafi S, Horio M, Küspert J, Choi J, Bucher D, Wo H, Zhao J, Zhang W, Asmara T C, Sassa Y, Månsson M, Christensen N B, Janoschek M, Kurosawa T, Momono N, Oda M, Fischer M H, Schmitt T, Chang J 2022 Nat. Commun. 13 1795Google Scholar

    [127]

    Martinelli L, Biało I, Hong X, Oppliger J, Lin C, Schaller T, Kúspert J, Fischer M H, Kurosawa T, Momono N, Oda M, Choi J, Agrestini S, Garcia-Fernandez M, Zhou K J, Wang Q, Chang J 2024 arXiv: 2406.15062 [cond-mat.str-el] http://dx.doi.org/https://doi.org/10.48550/arXiv.2406.15062

    [128]

    Choi J, Wang Q, Jöhr S, Christensen N B, Küspert J, Bucher D, Biscette D, Fischer M H, Hücker M, Kurosawa T, Momono N, Oda M, Ivashko O, Zimmermann M v, Janoschek M, Chang J 2022 Phys. Rev. Lett. 128 207002Google Scholar

    [129]

    Simutis G, Küspert J, Wang Q, Choi J, Bucher D, Boehm M, Bourdarot F, Bertelsen M, Wang C N, Kurosawa T, Momono N, Oda M, Månsson M, Sassa Y, Janoschek M, Christensen N B, Chang J, Mazzone D G 2022 Commun. Phys. 5 296Google Scholar

    [130]

    Boyle T J, Walker M, Ruiz A, Schierle E, Zhao Z, Boschini F, Sutarto R, Boyko T D, Moore W, Tamura N, He F, Weschke E, Gozar A, Peng W, Komarek A C, Damascelli A, Schüßler-Langeheine C, Frano A, da Silva Neto E H, Blanco-Canosa S 2021 Phys. Rev. Research 3 L022004Google Scholar

    [131]

    Gupta N K, Sutarto R, Gong R, Idziak S H J, Hale H, Kim Y J, Hawthorn D G 2023 Phys. Rev. B 108 L121113Google Scholar

    [132]

    Thampy V, Dean M P M, Christensen N B, Steinke L, Islam Z, Oda M, Ido M, Momono N, Wilkins S B, Hill J P 2014 Phys. Rev. B 90 100510Google Scholar

    [133]

    Jo N H, Gati E, Pfau H 2024 Front. Electron. Mater. 4 1392760Google Scholar

    [134]

    Yim C M, Panja S N, Trainer C, Topping C, Heil C, Gibbs A S, Magdysyuk O V, Tsurkan V, Loidl A, Rost A W, Wahl P 2021 Nano Lett. 21 2786Google Scholar

    [135]

    Nakata S, Horio M, Koshiishi K, Hagiwara K, Lin C, Suzuki M, Ideta S, Tanaka K, Song D, Yoshida Y, Eisaki H, Fujimori A 2021 npj Quantum Mater. 6 86Google Scholar

    [136]

    Nie L, Tarjus G, Kivelson S A 2014 PNAS 111 7980Google Scholar

    [137]

    Ke-Jin Z 2024 Acta Phys. Sin. 73 197301Google Scholar

    [138]

    Küspert J, Biało I, Frison R, Morawietz A, Martinelli L, Choi J, Bucher D, Ivashko O, v Zimmermann M, Christensen N B, Mazzone D G, Simutis G, Turrini A A, Thomarat L, Tam D W, Janoschek M, Kurosawa T, Momono N, Oda M, Wang Q, Chang J 2024 Commun. Phys. 7 225Google Scholar

    [139]

    Ren X, Sutarto R, Gao Q, Wang Q, Li J, Wang Y, Xiang T, Hu J, Chang J, Comin R, Zhou X J, Zhu Z 2024 Chin. Phys. Lett. 41 117404Google Scholar

    [140]

    Parzyck C T, Gupta N K, Wu Y, Anil V, Bhatt L, Bouliane M, Gong R, Gregory B Z, Luo A, Sutarto R, He F, Chuang Y D, Zhou T, Herranz G, Kourkoutis L F, Singer A, Schlom D G, Hawthorn D G, Shen K M 2024 Nat. Mater. 23 486Google Scholar

    [141]

    Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, Cheng J, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [142]

    Zhu Y, Peng D, Zhang E, Pan B, Chen X, Chen L, Ren H, Liu F, Hao Y, Li N, Xing Z, Lan F, Han J, Wang J, Jia D, Wo H, Gu Y, Gu Y, Ji L, Wang W, Gou H, Shen Y, Ying T, Chen X, Yang W, Cao H, Zheng C, Zeng Q, Guo J g, Zhao J 2024 Nature 631 531Google Scholar

    [143]

    Liu Z, Sun H, Huo M, Ma X, Ji Y, Yi E, Li L, Liu H, Yu J, Zhang Z, Chen Z, Liang F, Dong H, Guo H, Zhong D, Shen B, Li S, Wang M 2022 Sci. China Phys. Mech. Astron. 66 217411

    [144]

    Chen K, Liu X, Jiao J, Zou M, Jiang C, Li X, Luo Y, Wu Q, Zhang N, Guo Y, Shu L 2024 Phys. Rev. Lett. 132 256503Google Scholar

    [145]

    Dan Z, Zhou Y, Huo M, Wang Y, Nie L, Wang M, Wu T, Chen X 2024 arXiv: 2402.03952 [cond-mat.supr-con] http://dx.doi.org/https://doi.org/10.48550/arXiv.2402.03952

    [146]

    Chen X, Choi J, Jiang Z, Mei J, Jiang K, Li J, Agrestini S, Garcia-Fernandez M, Sun H, Huang X, Shen D, Wang M, Hu J, Lu Y, Zhou K J, Feng D 2024 Nat. Commun. 15 9597Google Scholar

    [147]

    Zhang J, Phelan D, Botana A S, Chen Y S, Zheng H, Krogstad M, Wang S G, Qiu Y, Rodriguez-Rivera J A, Osborn R, Rosenkranz S, Norman M R, Mitchell J F 2020 Nat. Commun. 11 6003Google Scholar

    [148]

    Ko E K, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J S, Goodge B H, Muller D A, Hwang H Y 2024 Nature http://dx.doi.org/10.1038/s41586-024-08525-3

    [149]

    Zhou G, Lv W, Wang H, Nie Z, Chen Y, Li Y, Huang H, Chen W, Sun Y, Xue Q K, Chen Z 2024 arXiv: 2412.16622 [cond-mat.supr-con] http://dx.doi.org/https://doi.org/10.48550/arXiv.2412.16622

  • [1] 李泽众, 洪文山, 谢涛, 刘畅, 罗会仟. 铁砷化物超导体的自旋激发谱.  , doi: 10.7498/aps.74.20241534
    [2] 向涛. 高温超导: 推动量子多体理论革命的引擎.  , doi: 10.7498/aps.74.20250313
    [3] 姬慧慧, 高兴国, 李枝兰. 铜/锰异质结中维度驱动的交换耦合效应.  , doi: 10.7498/aps.73.20240849
    [4] 周克瑾. 共振非弹性X射线散射在量子材料领域的应用.  , doi: 10.7498/aps.73.20241009
    [5] 沈瑶. 镍基超导体中电荷序的实验研究进展.  , doi: 10.7498/aps.73.20240898
    [6] 赵林, 刘国东, 周兴江. 高温超导体电子结构和超导机理的角分辨光电子能谱研究.  , doi: 10.7498/aps.70.20201913
    [7] 安明, 董帅. 电荷媒介的磁电耦合: 从铁电场效应到电荷序铁电体.  , doi: 10.7498/aps.69.20201193
    [8] 王海波, 罗震林, 刘清青, 靳常青, 高琛, 张丽. 共振X射线衍射研究高温超导Sr2CuO3.4晶体中的调制结构.  , doi: 10.7498/aps.68.20190494
    [9] 赵林, 刘国东, 周兴江. 铁基高温超导体电子结构的角分辨光电子能谱研究.  , doi: 10.7498/aps.67.20181768
    [10] 龚冬良, 罗会仟. 铁基超导体中的反铁磁序和自旋动力学.  , doi: 10.7498/aps.67.20181543
    [11] 王萌, 欧云波, 李坊森, 张文号, 汤辰佳, 王立莉, 薛其坤, 马旭村. SrTiO3(001)衬底上单层FeSe超导薄膜的分子束外延生长.  , doi: 10.7498/aps.63.027401
    [12] 黎欢, 郭卫. 自旋极化对Kondo系统基态的影响.  , doi: 10.7498/aps.59.7320
    [13] 左涛, 赵新杰, 王小坤, 岳宏卫, 方兰, 阎少林. LaAlO3衬底高温超导线性相位滤波器.  , doi: 10.7498/aps.58.4194
    [14] 赵宏伟, 孟豪, 张凌峰, 查国桥, 周世平. 欠掺杂高温超导体中的涡旋电荷结构相变.  , doi: 10.7498/aps.58.4189
    [15] 尤育新, 赵志刚, 王 进, 刘 楣. 高温超导体中约瑟夫森涡旋流阻的振荡效应.  , doi: 10.7498/aps.57.7252
    [16] 吴炳国, 赵志刚, 尤育新, 刘 楣. 二维约瑟夫森结阵列中的相变及噪声频谱研究.  , doi: 10.7498/aps.56.1680
    [17] 梁芳营, 刘 洪, 李英骏. 高温超导的压力效应研究.  , doi: 10.7498/aps.55.3683
    [18] 张玉龙, 姚 忻, 张 宏, 金燕苹. YBCO熔融织构准单晶中的进氧和脱氧扩散研究.  , doi: 10.7498/aps.54.3380
    [19] 周世平, 瞿海, 廖红印. 高温超导混合配对态与磁通涡旋格子.  , doi: 10.7498/aps.51.2355
    [20] 曹天德, 黄清龙. 二分量高温超导机理.  , doi: 10.7498/aps.51.1600
计量
  • 文章访问数:  392
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-08
  • 修回日期:  2025-01-22
  • 上网日期:  2025-02-21

/

返回文章
返回
Baidu
map