搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共格析出强化的超高强度马氏体时效不锈钢组织和力学性能

杨宇贤 王镇华 王清 唐才宇 万鹏 曹达华 董闯

引用本文:
Citation:

共格析出强化的超高强度马氏体时效不锈钢组织和力学性能

杨宇贤, 王镇华, 王清, 唐才宇, 万鹏, 曹达华, 董闯

Microstructure structure and mechanical properties of coherent precipitation strengthened ultrahigh strength maraging stainless steel

YANG Yuxian, WANG Zhenhua, WANG Qing, TANG Caiyu, WAN Peng, CAO Dahua, DONG Chuang
PDF
HTML
导出引用
  • 超高强度马氏体时效不锈钢同时拥有优异的强度及易加工等良好性能, 广泛应用于如飞机起落架等关键承载部件中. 然而, 由于析出的纳米粒子通常与体心立方(BCC)马氏体基体呈半共格或非共格关系, 传统马氏体时效不锈钢在追求超高强度的同时依然面临材料强韧性制衡这一难题. 本工作通过团簇式设计方法设计了一种新型共格析出强化的超高强度马氏体时效不锈钢(Fe-7.95Cr-13.47Ni-3.10Al-1.83Mo-0.03C-0.23Nb, 数字为各元素的质量百分含量). 实验结果表明, 该冷轧态不锈钢时效后马氏体组织晶粒破碎、拉长, 同时BCC马氏体基体中存在高密度位错(~1.8 × 10–3 nm–2)和大量的共格析出的B2-NiAl纳米粒子(< 5 nm). 力学性能方面, 该不锈钢在时效过程后表现出明显的时效硬化, 峰值时效硬度达到651 HV. 并且该不锈钢不仅具有极高的屈服强度(σYS = 2.3 GPa), 而且具有良好的断后延伸率(El = 3.6%), 表明实现了良好的强塑性匹配. 最后, 对该不锈钢的超高强度来源进行深入讨论, 发现该不锈钢的超高强度来自于各不同微观结构的强化作用. 本工作为进一步设计开发出高性能超高强度马氏体时效不锈钢提供了有价值的参考.
    Ultra-high strength maraging stainless steels possess many important applications such as in aircraft landing gears owing to their excellent strength and good process ability. However, traditional ultra-high strength maraging stainless steels are facing the challenge of balancing strength and ductility while pursuing ultra-high strength. This is mainly due to the semi-coherent or non-coherent relationship between the precipitated nanoparticles and the body-centered cubic (BCC) martensitic matrix. In this work, a novel ultra-high strength maraging stainless steel (Fe-7.95Cr-13.47Ni-3.10Al-1.83Mo-0.03C-0.23Nb, weight percent, %) is designed using a cluster formula approach. Alloy ingots are prepared by vacuum induction melting under an argon atmosphere, followed by hot rolling at 950℃ and multiple passes of cold rolling. Finally, the alloy is aged at 500℃ for 288 h. Microstructural characterizations of the alloy in different aging states are performed using electron backscatter diffraction (EBSD) and transmission electron microscope (TEM). As a result, the martensitic structure of the alloy is fragmented and elongated, with high-density dislocations (~ 1.8 × 10–3 nm–2) and a large number of coherent B2-NiAl nanoparticles (< 5 nm) observed in the BCC martensitic matrix after cold rolling and aging. In terms of mechanical properties, the alloy exhibits significant age-hardening, with a peak-aged hardness of 651 HV after ageing treatment. It also demonstrates an extraordinarily high yield strength (σYS = 2.3 GPa) and a decent elongation (El = 3.6%), indicating a well-balanced strength-ductility property. Finally, the origins of the ultra-high strength in the novel alloy are discussed in depth, showing that the ultra-high strength of this stainless steel comes from the strengthening effect of different microstructures. This study provides valuable guidance for designing high-performance ultra-high strength maraging stainless steels.
  • 图 1  由Pandat软件计算得到的Fe-7.95Cr-13.47Ni-3.10Al-1.83Mo-0.23Nb-0.03C合金的平衡相图

    Fig. 1.  Equilibrium phase diagram of the designed Fe-7.95Cr-13.47Ni-3.10Al-1.83Mo-0.23Nb-0.03C alloy calculated by Pandat software.

    图 2  合金冷轧态(CR)的EBSD反极图(IPF)和相分布图(a), (b); 冷轧态合金TEM明场像及其对应的SAED花样(c); HRTEM图像及其对应的FTT图像(d)

    Fig. 2.  EBSD IPF image and phase image of the designed alloy after cold-rolling (CR) treatment (a), (b); TEM bright-field (BF) image and corresponding SAED patterns (c) and High-resolution TEM image and its FTT pattern (d) of CR.

    图 3  12 h时效后CRA合金的微观结构合金冷轧+时效态(CRA)的EBSD反极图(IPF)和相分布图(a), (b); CRA合金TEM明场、暗场像及其对应的SAED花样(c)(d), CRA合金HRTEM图像及其对应的FTT图像(e, e-1, e-2)以及衍射环图像(f)

    Fig. 3.  Microstructures of 12 h-aged CRA alloys: EBSD IPF image and phase image of the CRA alloy (a), (b), TEM bright-field (BF) image and corresponding SAED patterns (c), TEM DF image (d), HRTEM image and its FTT patterns (e), (e-1), (e-2) and diffraction ring (f) of the CRA alloy.

    图 4  冷轧态合金在时效48 h后的TEM明场(a)、暗场像(b)

    Fig. 4.  TEM bright-field image (a), the corresponding dark-field image (b) of 48 h-aged CRA alloy.

    图 5  合金经热轧(HR)处理(a)和热轧+500 ℃/12 h时效(HRA)处理(c)后的EBSD反极图(IPF), HR(b)和HRA(d)处理后的EBSD相图

    Fig. 5.  EBSD inverse pole figures (IPFs) of the designed alloy after hot-rolling (HR) treatment (a) and hot-rolling + aging at 500 ℃/12 h (HRA) treatment (c), EBSD phase images of HR (b) and HRA (d).

    图 6  12 h时效HRA合金(a)和12 h时效冷轧+时效态(CRA)合金(c)的晶界分布图, HRA(b)和CRA(d)的核平均取向差(KAM)   

    Fig. 6.  Grain boundary distribution maps of 12 h-aged HRA alloys (a) and 12 h-aged CRA alloys (c), kernel average misorientation (KAM) of HRA (b) and CRA (d).

    图 7  CRA合金在500 ℃时效时显微硬度随时效时间的变化(a), 不同热处理状态下合金在室温拉伸下的工程应力-应变曲线(b)和室温三点弯曲下的载荷-位移曲线(c)

    Fig. 7.  Variation tendency of microhardness of the CRA alloy with aging time at 500℃ (a), room-temperature engineering stress-strain tensile curves of the current alloy at different heat-treated (b), and 3-points bending test of the current alloy at different heat-treated (c).

    图 8  根据不同强化机制计算得到的CR合金以及时效12 h CRA合金的屈服强度

    Fig. 8.  Calculated strength increments from different strengthening mechanisms in CR and 12 h-aged CRA alloys, in which the measured yield strength values are also presented with black star symbols for comparison.

    表 1  不同热处理状态下设计合金以及18 Ni(300)[45]H, σYS, σUTS, El, 极限弯曲载荷(FB), 及极限弯曲角度(θB)

    Table 1.  Mechanical properties of the current stainless steel at different heat-treated states and the 18 Ni(350) steel[45], including microhardness (H), yield strength (σYS), ultimate tensile strength (σUTS), elongation to fracture (El), ultimate bending force (FB), and ultimate bending angle (θB).

    StatesH/HVσYS/MPaσUTS/MPaEl/%FB/kNθB/(°)
    HR326±1078711009.38.535.5
    CR404±5140814324.49.714.9
    HRA: 5 h-aged573±6170419403.910.19.7
    CRA: 5 h-aged645±6232623443.622.215.4
    CRA: 12 h-aged641±8225423243.018.217.9
    18 Ni(300)200020507.0
    下载: 导出CSV
    Baidu
  • [1]

    杨柯, 牛梦超, 田家龙, 王威 2018 金属学报 54 1567Google Scholar

    Yang K, Niu M C, Tian J L, Wang W 2018 Acta. Metall. Sin. 54 1567Google Scholar

    [2]

    罗海文, 沈国慧 2020 金属学报 56 494Google Scholar

    Luo H W, Shen G H 2020 Acta. Metall. Sin. 56 494Google Scholar

    [3]

    Sun W W, Marceau R K W, Styles M J, Barbier D, Hutchinson C R 2017 Acta Mater. 130 28Google Scholar

    [4]

    Morris Jr J W 2017 Nat. Mater. 16 787Google Scholar

    [5]

    Yang J R, Yu T H, Wang C H 2006 Mater. Sci. Eng. A 438 276

    [6]

    Shi X H, Zeng W D, Zhao Q Y, Peng W W, Kang C 2016 J. Alloys. Compd. 679 184Google Scholar

    [7]

    Wert D E, DiSabella Strong R P 2006 Adv. Mater. Process. 164 34

    [8]

    Ifergane S, Pinkas M, Barkayc Z, Brosh E, Ezersky V, Beeri O, Eliaz N 2017 Mater. Charact. 127 129Google Scholar

    [9]

    Floreen S 1968 Metall. Rev. 13 115Google Scholar

    [10]

    Tewari R, Mazumder S, Batra I S, Dey G K, Banerjee S 2000 Acta Mater. 48 1187Google Scholar

    [11]

    Xu W, Rivera-Díaz-del-Castillo P E J, Yan W, Yang K, San Martín D, Kestens L A I, van der Zwaag S 2010 Acta Mater. 58 4067Google Scholar

    [12]

    Qi L, Jin Y C, Zhao Y H, Yang X M, Zhao H, Han P D 2015 J. Alloys. Compd. 621 383Google Scholar

    [13]

    Moshka O, Pinkas M., Brosh E, Ezersky V, Meshi L 2015 Mater. Sci. Eng. A 638 232Google Scholar

    [14]

    周倩青, 翟玉春 2009 金属学报 45 1249Google Scholar

    Zhou Q Q, Zhai Y C 2009 Acta Metall. Sin. 45 1249Google Scholar

    [15]

    Hättestrand M, Nilsson J O, Stiller K, Liu P, Andersson M 2004 Acta Mater. 52 1023Google Scholar

    [16]

    Ghosh A, Das S, Chatterjee S 2008 Mater. Sci. Eng. A 486 152Google Scholar

    [17]

    Mahmoudi A, Zamanzad Ghavidel M R, Hossein Nedjad S, Heidarzadeh A, Nili Ahmadabadi M 2011 Mater. Charact. 62 976Google Scholar

    [18]

    Leitner H, Schnitzer R, Schober M, Zinner S 2011 Acta Mater. 59 5012Google Scholar

    [19]

    Vaithyanathan V, Chen L Q 2002 Acta Mater. 50 4061Google Scholar

    [20]

    Li H, Liu Y, Liu B 2022 Mater. Sci. Eng. A 842 143099Google Scholar

    [21]

    Niu M C, Zhou G, Wang W, Shahzad M B, Shan Y Y, Yang K 2019 Acta Mater. 179 296Google Scholar

    [22]

    Wan J Q, Ruan H H, Ding Z Y, Kong L B 2023 Scr. Mater. 226 115224Google Scholar

    [23]

    Li K, Yu B, Misra R D K, Han G, Liu S, Shang C J 2018 Mater. Sci. Eng. A 715 485

    [24]

    Ooi S W, Hill P, Rawson M, Bhadeshia H K D H 2013 Mater. Sci. Eng. A 564 485Google Scholar

    [25]

    Liu T Q, Cao Z X, Wang H, Wu G L, Jin J J, Cao W Q 2020 Scr. Mater. 178 285Google Scholar

    [26]

    Li Y C, Yan W, J. D. Cotton, G. J. Ryan, Shen Y F, Wang W, Shan Y Y, Yang K 2015 Mater. Des. 82 56Google Scholar

    [27]

    Hedströma P, Baghsheikhi S, Liu P, Odqvist J 2012 Mater. Sci. Eng. A 534 552Google Scholar

    [28]

    Li J L, Zhang J Q, Li Z, Wang Q, Dong C, Xu F, Sun L X, Liaw P K 2024 J. Mater. Sci. Technol. 186 174Google Scholar

    [29]

    Zhang J X, Wang J C, Harada H, Koizumi Y 2005 Acta Mater. 53 4623Google Scholar

    [30]

    Wang Z H, Wang Q, Niu B, Dong C, Zhang H W, Zhang H F, Liaw P K 2021 Mater. Res. Lett. 9 458Google Scholar

    [31]

    Jiang S H, Wang H, Wu Y, Liu X J, Chen H H, Yao M J, Gault B, Ponge D, Raabe D, Hirata A, Chen M W, Wang Y D, Lu Z P 2017 Nature 544 460Google Scholar

    [32]

    Zhou B C, Liu S F, Wu H H, Luan J H, Guo J M, Yang T, Jiao Z B 2023 Mater. Des. 234 112341Google Scholar

    [33]

    Liang Y J, Wang L J, Wen Y R, Cheng B Y, Wu Q L, Cao T Q, Xiao Q, Xue Y F, Sha G, Wang Y D, Ren Y, Li X Y, Wang L, Wang F C, Cai H N 2018 Nat. Commun. 9 4063Google Scholar

    [34]

    Hong H L, Wang Q, Dong C, Liaw P K 2014 Sci. Rep. 4 7065Google Scholar

    [35]

    Pang C, Jiang B B, Shi Y, Wang Q, Dong C 2015 J. Alloys. Compd. 652 63Google Scholar

    [36]

    Wang Z H, Niu B, Wang Q, Dong C, Jie J C, Wang T M, Nieh T G 2021 J. Mater. Sci. Technol. 93 60Google Scholar

    [37]

    Calderon H A, Fine M E, Weertman J R 1987 Metall. Trans. A 19 1135

    [38]

    Vo N Q, Liebscher C H, Rawlings M J S, Asta M, Dunand D C 2014 Acta Mater. 71 89Google Scholar

    [39]

    Czyryca E J 1993 Key Eng. Mater. 84 491

    [40]

    Wen D H, Wang Q, Jiang B B, Zhang C, Li X N, Chen G Q, Tang R, Zhang R Q, Dong C, P. K. Liaw 2018 Mater. Sci. Eng. A 719 27Google Scholar

    [41]

    Bailey N 1993 Welding Steels without Hydrogen Cracking (Cambridge: Woodhead Publishing) p69

    [42]

    Briant C L, Banerji S K 1978 Int. Metal. Rev. 23 164

    [43]

    Hosford W F 2005 Mechanical Behavior of Materials (New York: Cambridge University Press) p16

    [44]

    Leitner H, Schober M, Schnitzer R 2010 Acta Mater. 58 1261Google Scholar

    [45]

    毕正绪 2014 特钢技术 20 11Google Scholar

    Bi Z X 2014 Special Steel Technol. 20 11Google Scholar

    [46]

    Galindo-Nava E I, Rivera-Díaz-del-Castillo P E J 2015 Acta Mater. 98 81Google Scholar

    [47]

    Galindo-Nava E I, Rainforth W M, Rivera-Díaz-del-Castillo P E J 2016 Acta Mater. 117 270Google Scholar

    [48]

    Rivera-Díaz-del-Castillo P E J, Hayashi K, Galindo-Nava E I 2013 Mater. Sci. Technol. 29 1206Google Scholar

    [49]

    Fleischer R L 1961 Acta Matall. 9 966Google Scholar

    [50]

    Lide D R 2008 CRC Handbook of Chemistry and Physics (Boca Raton: CRC Press) 12-10

    [51]

    Morito S, Yoshida H, Maki T, Huang X 2006 Mater. Sci. Eng. A 438 237

    [52]

    Kocks U F, Mecking H 2003 Prog. Mater Sci. 48 171Google Scholar

    [53]

    Su J, Raabe D, Li Z M 2019 Acta Mater. 163 40Google Scholar

    [54]

    Nembach E 1997 Mater. Sci. Technol. 3 329

    [55]

    Gladman T 1999 Mater. Sci. J. 15 30

    [56]

    Argon A 2007 Strengthening Mechanisms in Crystal Plasticity (Oxford: Oxford University Press) p74

    [57]

    P. M. Kelley 1973 Int. Metall. Rev. 18 31Google Scholar

    [58]

    A. Kelly, R. B. Nicholson 1971 Strengthening Methods in Crystals (London: Elsevier) p37

    [59]

    T. Hong, A. J. Freeman 1991 Phys. Rev. B Condens. Matter. 43 6446Google Scholar

  • [1] 程大钊, 刘彩艳, 张超然, 屈佳辉, 张静. 中子辐照奥氏体不锈钢晶内/晶间孔隙形貌演化的相场模拟.  , doi: 10.7498/aps.73.20241353
    [2] 杜小娇, 魏龙, 孙羽, 胡水明. 自由电子激光制备高强度亚稳态氦原子和类氦离子.  , doi: 10.7498/aps.73.20240554
    [3] 钱骏, 谢伟, 周小伟, 谭坚文, 王智彪, 杜永洪, 李雁浩. 基于换能器驱动信号特征的高强度聚焦超声焦域损伤实时监测.  , doi: 10.7498/aps.71.20211443
    [4] 罗忠兵, 董慧君, 马志远, 邹龙江, 朱效磊, 林莉. 铸造奥氏体不锈钢中铁素体与奥氏体位向关系及其对声衰减的影响.  , doi: 10.7498/aps.67.20181251
    [5] 郭各朴, 宿慧丹, 丁鹤平, 马青玉. 基于电阻抗层析成像的高强度聚焦超声温度监测技术.  , doi: 10.7498/aps.66.164301
    [6] 熊志成, 朱丽霖, 刘诚, 高淑梅, 朱健强. 基于纳米天线的多通道高强度定向表面等离子体波激发.  , doi: 10.7498/aps.64.247301
    [7] 郑晖, 张崇宏, 陈波, 杨义涛, 赖新春. 氦离子低温预辐照对不锈钢中氦泡生长抑制作用的Monte Carlo模拟研究.  , doi: 10.7498/aps.63.106102
    [8] 刘慎业, 黄翼翔, 胡昕, 张继彦, 杨国洪, 李军, 易荣清, 杜华冰, 丁永坤. 高强度二倍频激光辐照银薄膜靶的烧蚀和X光辐射实验研究.  , doi: 10.7498/aps.62.035202
    [9] 孙健明, 于洁, 郭霞生, 章东. 基于分数导数研究高强度聚焦超声的非线性声场.  , doi: 10.7498/aps.62.054301
    [10] 徐丰, 陆明珠, 万明习, 方飞. 256阵元高强度聚焦超声相控阵系统误差与多焦点模式精确控制.  , doi: 10.7498/aps.59.1349
    [11] 刘 军, 陈晓伟, 刘建胜, 冷雨欣, 朱 毅, 戴 君, 李儒新, 徐至展. 负啁啾高强度飞秒脉冲在正常色散材料中传输特性研究.  , doi: 10.7498/aps.55.1821
    [12] 胡志华, 廖显伯, 刁宏伟, 夏朝凤, 曾湘波, 郝会颖, 孔光临. p型纳米硅与a-Si:H不锈钢底衬nip太阳电池.  , doi: 10.7498/aps.54.2945
    [13] 陈晓伟, 刘 军, 朱 毅, 冷雨欣, 葛晓春, 李儒新, 徐至展. 高强度飞秒激光脉冲在空气中的自压缩.  , doi: 10.7498/aps.54.3665
    [14] 陆明珠, 万明习, 施雨, 宋延淳. 多阵元高强度聚焦超声多目标控制方法研究.  , doi: 10.7498/aps.51.928
    [15] 魏学勤, 郑启光, 辜建辉, 李再光. 连续CO2激光辐照加热不锈钢时的反常温度涨落特性.  , doi: 10.7498/aps.48.2246
    [16] 李玉璞, 王佩璇, 张国光, 马如璋, 刘家瑞, 朱沛然, 邱长青. He在HR-1型不锈钢中的捕获与释放研究.  , doi: 10.7498/aps.38.1122
    [17] 许政一, 张安东, 徐刚, 杨华光, 李荫远. α-LiIO3单晶中离子输运引起的高强度准弹性光散射.  , doi: 10.7498/aps.31.615
    [18] 蔡其巩, 朱静, 何崇智. 马氏体时效钢的时效结构.  , doi: 10.7498/aps.23.26
    [19] 马应良, 葛庭燧. 高碳和低碳马氏体回火分解产物的共格性所引起的内耗峯.  , doi: 10.7498/aps.20.72
    [20] 庄育智, 李有柯. 18/8型不锈钢中σ-相的形成.  , doi: 10.7498/aps.10.321
计量
  • 文章访问数:  418
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-23
  • 修回日期:  2024-12-28
  • 上网日期:  2025-01-08

/

返回文章
返回
Baidu
map