搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相场法研究Fe84Cu15Mn1合金富Cu相析出的内磁能作用机理

蒋新安 赵宇宏 杨文奎 田晓林 侯华

引用本文:
Citation:

相场法研究Fe84Cu15Mn1合金富Cu相析出的内磁能作用机理

蒋新安, 赵宇宏, 杨文奎, 田晓林, 侯华

Mechanism of internal magnetic energy of Cu-rich phase precipitation in Fe84Cu15Mn1 alloy by phase field method

Jiang Xin-An, Zhao Yu-Hong, Yang Wen-Kui, Tian Xiao-Lin, Hou Hua
PDF
HTML
导出引用
  • 本文基于连续相场模型, 对内磁能作用下Fe-Cu-Mn合金中富Cu相析出行为进行了研究, 得到不同温度、不同Mn, Cu含量条件下的内磁能对富Cu相的平均颗粒半径、体积分数、吉布斯自由能的影响. 模拟结果表明, Mn含量越低, 居里温度越高, 内磁能对自由能的贡献越大, 且内磁能的贡献随温度升高而减小; 内磁能降低了相结构转变势垒, 促进了相结构转变. 沉淀相体积分数随Cu含量增加而增加, 通过对比有无内磁能对沉淀相体积分数的影响, 内磁能作用导致沉淀相拥有更大的体积分数. 因此在内磁能作用下, 富Cu相具有较大的平均粒径、体积分数和较小的矫顽力, 同时预测了合金硬度的变化趋势.
    Based on the continuous phase field model, the precipitation behavior of Cu rich phase in Fe-Cu-Mn alloy under the action of internal magnetic energy is studied. The effects of internal magnetic energy on the average particle radius, volume fraction and Gibbs free energy of Cu rich phase at different temperatures and different Mn content and Cu content are investigated. The simulation results show that the lower the Mn content and the higher the Curie temperature, the greater the contribution of internal magnetic energy to free energy is, and the contribution of internal magnetic energy decreases with temperature increasing. The internal magnetic energy reduces the phase structure transition barrier and promotes the phase structure transition. The volume fraction of precipitated phase increases with Cu content increasing. Compared with the effect of internal magnetic energy on the volume fraction of precipitated phase, the effect of internal magnetic energy leads to a large volume fraction of precipitated phase. Therefore, under the action of internal magnetic energy, the Cu rich phase has larger average particle size, volume fraction and smaller coercivity. Finally, the change trend of alloy hardness is predicted.
      通信作者: 赵宇宏, zhaoyuhong@nuc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52074246)和山西省研究生创新项目(批准号: 2021Y592)资助的课题.
      Corresponding author: Zhao Yu-Hong, zhaoyuhong@nuc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52074246) and the Shanxi Graduate Innovation Project, China (Grant No. 2021Y592).
    [1]

    Que Z, Heczko M, Kuběna I, Seifert H P, Spaetig P 2020 Mater. Charact. 165 110405Google Scholar

    [2]

    Deschamps A, Militzer M, Poole W 2001 ISIJ. INT. 41 196Google Scholar

    [3]

    Bousquet A, Marie S, Bompard P 2012 Comp. Mater. Sci. 64 17Google Scholar

    [4]

    林民东, 朱娟娟, 王伟, 周邦新, 刘文庆, 徐刚 2010 59 1163Google Scholar

    Ling M D, Zhu J J, Wang W, Zhou B X, Liu W Q, Xu G, 2010 Acta Phys. Sin. 59 1163Google Scholar

    [5]

    Miodownik A 1982 J. Phase. Equil. 2 406Google Scholar

    [6]

    Zhao Y, Zhang B, Hou H, Chen W, Wang M 2018 J. Mater. Sci. Technol. 35 1044Google Scholar

    [7]

    祁科武, 赵宇宏, 田晓林, 彭敦维, 孙远洋, 侯华 2020 69 140504Google Scholar

    Qi K W, ZhaoY H, Tian X L, Peng D W, Sun Y Y, Hou H 2020 Acta Phys. Sin. 69 140504Google Scholar

    [8]

    Cui S, Mamivand M, Morgan D 2020 Mater. Des. 191 108574Google Scholar

    [9]

    Sun Y Y, Zhao Y H, Zhao B J, Yang W K, Tian X L, H Hua 2019 J. Mater. Sci. 54 11263Google Scholar

    [10]

    Gorbatov O, Razumov I, Gornostyrev Y, Razumovskiy V I, Korzhavyi P, Ruban A 2013 Phys. Rev. B 88 174113Google Scholar

    [11]

    Korzhavyi P A, Ruban A V, Gorbatov O I, Gornostyrev 2015 Scr. Mater. 102 11Google Scholar

    [12]

    Inden G 1981 Physica B+C 103 82Google Scholar

    [13]

    Koyama T 2008 Sci. Technol. Adv. Mat. 9 013006Google Scholar

    [14]

    Xin T, Zhao Y, Mahjoub R, Jiang J, Yadav A, Nomoto K, Niu R, Tang S, Ji F, Quadir M, Miskovic D, Daniels J, Xu W, Liao X, Chen L Q, Hagihara K, Li X, Ringer S, Ferry M 2021 Sci. Adv. 7 3039Google Scholar

    [15]

    Chen L Q, Zhao Y 2022 Prog. Mater. Sci. 124 100868Google Scholar

    [16]

    Chen W, Zhao Y, Yang S, Zhang D, Hou H 2021 Adv. Compos. Hybrid Mater. 4 371Google Scholar

    [17]

    Zhu N Y, Sun C, Li Y L, Lingyun Q, Hu S, Cai Y, Feng Y H 2021 Comput. Mater. Sci. 200 110858Google Scholar

    [18]

    赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华 2021 金属学报 57 19Google Scholar

    Zhao Y H, Jing J H, Chen L W, Xu F H, Hou H 2021 Acta Metall. Sin. 57 19Google Scholar

    [19]

    Zhang J, Wang H, Kuang W, Zhang Y, Li S, Zhao Y, Herlach D M 2018 Acta Mater. 148 86Google Scholar

    [20]

    Kuang W, Wang H, Li X, Zhang J, Zhou Q, Zhao Y 2018 Acta Mater. 159 16Google Scholar

    [21]

    Wang X, Qiang W 2016 J. Nucl. Mater. 482 135Google Scholar

    [22]

    Cahn J, Hilliard J 1958 J. Chem. Phys. 28 258Google Scholar

    [23]

    Allen S, Cahn J W 1992 Acta Metall. 20 423Google Scholar

    [24]

    Kitashima T, Harada H 2009 Acta Mater. 57 2020Google Scholar

    [25]

    Tsukada Y, Koyama T, Murata Y, Miura N, Kondo Y 2014 Comput. Mater. Sci. 83 371Google Scholar

    [26]

    Segawa M, Yamanaka A, Nomoto S 2017 Comput. Mater. Sci. 136 67Google Scholar

    [27]

    Wrobel J S, Nguyen-Manh D, Lavrentiev M Y, Muzyk M, Dudarev S L 2015 Phys. Rev. B 91 024108Google Scholar

    [28]

    Liu D, Zhang L, Du Y, Jin Z 2015 J. Alloys. Compd. 634 148Google Scholar

    [29]

    Deng S, Chen W, Zhong J, Zhang L, Du Y, Chen L 2017 Calphad 56 230Google Scholar

    [30]

    Biner B, Rao W, Zhang Y 2016 J. Nucl. Mater. 468 9Google Scholar

    [31]

    Hu Y, Wang G, Ji Y, Wang L, Rong Y, Chen L Q 2019 Mat. Sci. Eng. A-Struct. 746 105Google Scholar

    [32]

    杨一波, 赵宇宏, 田晓林, 侯华 2020 69 140201Google Scholar

    Yang Y B, Zhao Y H, Tian X L, Hou H 2020 Acta Phys. Sin. 69 140201Google Scholar

    [33]

    Koyama T, Onodera H 2004 Met. Mater. Int. 10 321Google Scholar

    [34]

    Koyama T, Onodera H 2005 Mater. Trans. 46 1187Google Scholar

    [35]

    Koyama T 2005 Defect. Diffus. Forum. 593 237Google Scholar

    [36]

    Saunders N, Miodownik A 1992 Pergamon

    [37]

    Dinsdale A T 1991 Calphad 15 317Google Scholar

    [38]

    Liu K, Hu L J, Zhang Q F, Xie Y P, Gao C, Dong H Y, Liang W Y 2017 Chin. Phys. B 26 83601Google Scholar

    [39]

    赵宝军, 赵宇宏, 孙远洋, 杨文奎, 侯华 2019 金属学报 55 8Google Scholar

    Zhao B J, Zhao Y H, Sun Y Y, Yang W K, Hou H 2019 Acta Metall. Sin. 55 8Google Scholar

    [40]

    Tian X L, Zhao Y H, Peng D W, Guo Q W, Guo Z, Hou H 2021 T. Nonferr. Metal. Soc. 31 1175Google Scholar

    [41]

    Xiong S, Qi W, Huang B, Yang W, Li Y J 2010 Mater. Chem. Phys. 120 446Google Scholar

    [42]

    Zhu J, Tianlong Z, Yang Y, Liu C T 2019 Acta Mater. 166 560Google Scholar

    [43]

    Waseda A, Kimura K, Ino H 1994 Mat. Sci. Eng. A-struct. 181 762Google Scholar

    [44]

    Wang L, Darvishi Kamachali R 2021 Acta Mater. 207 116668Google Scholar

    [45]

    Sun Y, Zhao Y, Zhao B, Guo Z, Tian X, Yang W, Hou H 2020 Calphad 69 101759Google Scholar

    [46]

    Gorbatov O, Okatov S, Gornostyrev Y, Korzhavyi P, Ruban A 2013 Phys. Met. Metallogr+. 114 642Google Scholar

    [47]

    Deschamps A, Militzer M, Poole W 2003 ISIJ. INT. 43 1826Google Scholar

    [48]

    Osamura K, Okuda H, Shojiro O, Takashima M, Asano K, Furusaka M, Kishida K, Kurosawa F 1994 ISIJ. INT. 34 359Google Scholar

    [49]

    Guo H, Enomoto M, Shang C J 2018 Comp. Mater. Sci. 141 101Google Scholar

    [50]

    Shu S, Wells P B, Almirall N, Odette G R, Morgan D D 2018 Acta Mater. 157 298Google Scholar

    [51]

    田晓林, 赵宇宏, 田晋忠, 侯华 2018 67 230201Google Scholar

    Tian X L, Zhao Y H, Tian J Z, Hou H 2018 Acta Phys. Sin. 67 230201Google Scholar

    [52]

    Shu S, Wirth B, Wells P, Morgan D, Odette G R 2018 Acta Mater. 146 237Google Scholar

    [53]

    Isheim D, Gagliano M, Fine M, Seidman D 2006 Acta Mater. 54 841Google Scholar

    [54]

    Xie Y P, Zhao S J 2012 Comp. Mater. Sci. 63 329Google Scholar

    [55]

    Zheng Z, Lei L, Zhou Q, Wang W H, Zeng D C, Qiu Z, Hong Y 2019 J. Magn. Magn. Mater. 484 105Google Scholar

    [56]

    Xie Y P, Zhao S J 2011 Comp. Mater. Sci. 50 2586Google Scholar

    [57]

    Ngayam-Happy R, Becquart C S, Domain C, Malerba L 2012 J. Nucl. Mater. 426 198Google Scholar

    [58]

    Vincent E, Becquart C S, Domain C 2006 J. Nucl. Mater. 359 227Google Scholar

    [59]

    Wang X, Qiang W, Shu G, Qiao J, Wu Y 2021 J. Magn. Magn. Mater. 527 167698Google Scholar

    [60]

    Vandenbossche L P, Konstantinović M J, Almazouzi A, Dupré L R 2007 J. Phys. D 40 4114Google Scholar

    [61]

    Kamada Y, Park D G, Takahashi S, Kikuchi H, Kobayashi S, Ara K, Hong J H, Park I G 2007 IEEE. T. Magn. 43 2701Google Scholar

    [62]

    Lo C 2012 AIP Conf. Proc. 1430 1351Google Scholar

    [63]

    Takahashi S, Kubota A, Kobayashi S, Kamada Y, Kikuchi H, Ara K 2007 J. Mater. Process. Technol. 181 199Google Scholar

    [64]

    高阳 2008 先进材料测试仪器基础教程(上册) (北京: 清华大学出版社)

    Gao Y 2008 The Fundamental of Advanced Measuring Instruments for Materials (Vol. 1) (Beijing: Tsinghua University Press) (in Chinese)

    [65]

    Cui S, Jung I H 2017 Calphad 56 241Google Scholar

    [66]

    Miettinen J 2001 Calphad 25 43Google Scholar

  • 图 1  不同温度下GFE随Cu浓度变化情况 (a) 不考虑IME作用; (b) 考虑IME作用

    Fig. 1.  Gibbs free energy versus Cu concentration at different temperatures: (a) The effect of internal magnetic energy is not considered; (b) the effect of internal magnetic energy is considered.

    图 2  (a)—(e) 823 K时无IME作用下的演化过程 (a) $ {t}^{\mathrm{*}} $= 7500, (b) $ {t}^{\mathrm{*}} $= 8500, (c) $ {t}^{\mathrm{*}} $= 9000, (d) $ {t}^{\mathrm{*}} $= 9500, (e) $ {t}^{\mathrm{*}} $= 11000; (f)—(j) 有IME作用下的演化过程 (f) $ {t}^{\mathrm{*}} $= 7500, (g) $ {t}^{\mathrm{*}} $= 8500, (h) $ {t}^{\mathrm{*}} $= 9000, (i) $ {t}^{\mathrm{*}} $= 9500, (j) $ {t}^{\mathrm{*}} $= 11000; (k) 有IME与无IME作用下的平均颗粒半径变化

    Fig. 2.  (a)–(e) The evolution process without internal magnetism at 823 K: (a) $ {t}^{\mathrm{*}} $= 7500, (b) $ {t}^{\mathrm{*}} $= 8500, (c) $ {t}^{\mathrm{*}} $= 9000, (d) $ {t}^{\mathrm{*}} $= 9500, (e) $ {t}^{\mathrm{*}} $= 11000; (f)–(j) the evolution process with internal magnetism: (f) $ {t}^{\mathrm{*}} $= 7500, (g) $ {t}^{\mathrm{*}} $= 8500, (h) $ {t}^{\mathrm{*}} $= 9000, (i) $ {t}^{\mathrm{*}} $= 9500, (j) $ {t}^{\mathrm{*}} $= 11000; (k) the change of average particle radius with and without internal magnetism.

    图 3  温度为823 K时IME作用下Mn与Cu沉淀析出的成分曲线(原子含量) (a) 早期(t * = 2500)时Cu与Mn的成分曲线; (b) 不同时间步数Cu的成分曲线; (c) 不同时间步数Mn的成分曲线; (d) Mn环在不同时间步数的演化过程

    Fig. 3.  The composition curve of precipitation of Mn and Cu under the action of magnetic energy in 823 K (atomic percent): (a) The composition curve of Cu and Mn in early (t * = 2500); (b) composition curve of Cu with different time steps; (c) composition curve with different time step size of Mn; (d) evolution process of Mn ring with different time steps.

    图 4  Cu原子和Mn原子相互作用和局部元素分布示意图 (a)—(c) Cu, Mn原子相互作用示意图; (d) Fe, Cu, Mn局部元素分布示意图

    Fig. 4.  Schematic diagram of Cu atom and Mn atom interaction and local element distribution: (a)–(c) Schematic diagrams of Cu and Mn atom interaction; (d) schematic diagram of local element distribution of Fe, Cu and Mn.

    图 5  温度为823 K (a) Mn含量与居里温度的关系; (b) 温度与IME的关系; (c) 不同Mn含量下吉布斯自由能

    Fig. 5.  At 823 K (a) Relationship between Mn content and Curie temperature; (b) relationship between temperature and internal magnetic energy; (c) Gibbs free energy with different Mn content.

    图 6  在有无IME作用下体积分数随Cu含量的变化

    Fig. 6.  Variation of volume fraction with Cu content with or without internal magnetic energy.

    图 7  矫顽力($ {H}_{\mathrm{c}} $)与颗粒半径以及硬度的关系示意图 (a) $ {H}_{\mathrm{c}} $与平均颗粒半径的关系示意图; (b) $ {H}_{\mathrm{c}} $与硬度关系示意图

    Fig. 7.  The relationship between coercivity ($ {H}_{\mathrm{c}} $) and particle radius and hardness: (a) Schematic diagram of relationship between $ {H}_{\mathrm{c}} $ and average particle radius; (b) schematic diagram of relationship between $ {H}_{\mathrm{c}} $ and hardness.

    Baidu
  • [1]

    Que Z, Heczko M, Kuběna I, Seifert H P, Spaetig P 2020 Mater. Charact. 165 110405Google Scholar

    [2]

    Deschamps A, Militzer M, Poole W 2001 ISIJ. INT. 41 196Google Scholar

    [3]

    Bousquet A, Marie S, Bompard P 2012 Comp. Mater. Sci. 64 17Google Scholar

    [4]

    林民东, 朱娟娟, 王伟, 周邦新, 刘文庆, 徐刚 2010 59 1163Google Scholar

    Ling M D, Zhu J J, Wang W, Zhou B X, Liu W Q, Xu G, 2010 Acta Phys. Sin. 59 1163Google Scholar

    [5]

    Miodownik A 1982 J. Phase. Equil. 2 406Google Scholar

    [6]

    Zhao Y, Zhang B, Hou H, Chen W, Wang M 2018 J. Mater. Sci. Technol. 35 1044Google Scholar

    [7]

    祁科武, 赵宇宏, 田晓林, 彭敦维, 孙远洋, 侯华 2020 69 140504Google Scholar

    Qi K W, ZhaoY H, Tian X L, Peng D W, Sun Y Y, Hou H 2020 Acta Phys. Sin. 69 140504Google Scholar

    [8]

    Cui S, Mamivand M, Morgan D 2020 Mater. Des. 191 108574Google Scholar

    [9]

    Sun Y Y, Zhao Y H, Zhao B J, Yang W K, Tian X L, H Hua 2019 J. Mater. Sci. 54 11263Google Scholar

    [10]

    Gorbatov O, Razumov I, Gornostyrev Y, Razumovskiy V I, Korzhavyi P, Ruban A 2013 Phys. Rev. B 88 174113Google Scholar

    [11]

    Korzhavyi P A, Ruban A V, Gorbatov O I, Gornostyrev 2015 Scr. Mater. 102 11Google Scholar

    [12]

    Inden G 1981 Physica B+C 103 82Google Scholar

    [13]

    Koyama T 2008 Sci. Technol. Adv. Mat. 9 013006Google Scholar

    [14]

    Xin T, Zhao Y, Mahjoub R, Jiang J, Yadav A, Nomoto K, Niu R, Tang S, Ji F, Quadir M, Miskovic D, Daniels J, Xu W, Liao X, Chen L Q, Hagihara K, Li X, Ringer S, Ferry M 2021 Sci. Adv. 7 3039Google Scholar

    [15]

    Chen L Q, Zhao Y 2022 Prog. Mater. Sci. 124 100868Google Scholar

    [16]

    Chen W, Zhao Y, Yang S, Zhang D, Hou H 2021 Adv. Compos. Hybrid Mater. 4 371Google Scholar

    [17]

    Zhu N Y, Sun C, Li Y L, Lingyun Q, Hu S, Cai Y, Feng Y H 2021 Comput. Mater. Sci. 200 110858Google Scholar

    [18]

    赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华 2021 金属学报 57 19Google Scholar

    Zhao Y H, Jing J H, Chen L W, Xu F H, Hou H 2021 Acta Metall. Sin. 57 19Google Scholar

    [19]

    Zhang J, Wang H, Kuang W, Zhang Y, Li S, Zhao Y, Herlach D M 2018 Acta Mater. 148 86Google Scholar

    [20]

    Kuang W, Wang H, Li X, Zhang J, Zhou Q, Zhao Y 2018 Acta Mater. 159 16Google Scholar

    [21]

    Wang X, Qiang W 2016 J. Nucl. Mater. 482 135Google Scholar

    [22]

    Cahn J, Hilliard J 1958 J. Chem. Phys. 28 258Google Scholar

    [23]

    Allen S, Cahn J W 1992 Acta Metall. 20 423Google Scholar

    [24]

    Kitashima T, Harada H 2009 Acta Mater. 57 2020Google Scholar

    [25]

    Tsukada Y, Koyama T, Murata Y, Miura N, Kondo Y 2014 Comput. Mater. Sci. 83 371Google Scholar

    [26]

    Segawa M, Yamanaka A, Nomoto S 2017 Comput. Mater. Sci. 136 67Google Scholar

    [27]

    Wrobel J S, Nguyen-Manh D, Lavrentiev M Y, Muzyk M, Dudarev S L 2015 Phys. Rev. B 91 024108Google Scholar

    [28]

    Liu D, Zhang L, Du Y, Jin Z 2015 J. Alloys. Compd. 634 148Google Scholar

    [29]

    Deng S, Chen W, Zhong J, Zhang L, Du Y, Chen L 2017 Calphad 56 230Google Scholar

    [30]

    Biner B, Rao W, Zhang Y 2016 J. Nucl. Mater. 468 9Google Scholar

    [31]

    Hu Y, Wang G, Ji Y, Wang L, Rong Y, Chen L Q 2019 Mat. Sci. Eng. A-Struct. 746 105Google Scholar

    [32]

    杨一波, 赵宇宏, 田晓林, 侯华 2020 69 140201Google Scholar

    Yang Y B, Zhao Y H, Tian X L, Hou H 2020 Acta Phys. Sin. 69 140201Google Scholar

    [33]

    Koyama T, Onodera H 2004 Met. Mater. Int. 10 321Google Scholar

    [34]

    Koyama T, Onodera H 2005 Mater. Trans. 46 1187Google Scholar

    [35]

    Koyama T 2005 Defect. Diffus. Forum. 593 237Google Scholar

    [36]

    Saunders N, Miodownik A 1992 Pergamon

    [37]

    Dinsdale A T 1991 Calphad 15 317Google Scholar

    [38]

    Liu K, Hu L J, Zhang Q F, Xie Y P, Gao C, Dong H Y, Liang W Y 2017 Chin. Phys. B 26 83601Google Scholar

    [39]

    赵宝军, 赵宇宏, 孙远洋, 杨文奎, 侯华 2019 金属学报 55 8Google Scholar

    Zhao B J, Zhao Y H, Sun Y Y, Yang W K, Hou H 2019 Acta Metall. Sin. 55 8Google Scholar

    [40]

    Tian X L, Zhao Y H, Peng D W, Guo Q W, Guo Z, Hou H 2021 T. Nonferr. Metal. Soc. 31 1175Google Scholar

    [41]

    Xiong S, Qi W, Huang B, Yang W, Li Y J 2010 Mater. Chem. Phys. 120 446Google Scholar

    [42]

    Zhu J, Tianlong Z, Yang Y, Liu C T 2019 Acta Mater. 166 560Google Scholar

    [43]

    Waseda A, Kimura K, Ino H 1994 Mat. Sci. Eng. A-struct. 181 762Google Scholar

    [44]

    Wang L, Darvishi Kamachali R 2021 Acta Mater. 207 116668Google Scholar

    [45]

    Sun Y, Zhao Y, Zhao B, Guo Z, Tian X, Yang W, Hou H 2020 Calphad 69 101759Google Scholar

    [46]

    Gorbatov O, Okatov S, Gornostyrev Y, Korzhavyi P, Ruban A 2013 Phys. Met. Metallogr+. 114 642Google Scholar

    [47]

    Deschamps A, Militzer M, Poole W 2003 ISIJ. INT. 43 1826Google Scholar

    [48]

    Osamura K, Okuda H, Shojiro O, Takashima M, Asano K, Furusaka M, Kishida K, Kurosawa F 1994 ISIJ. INT. 34 359Google Scholar

    [49]

    Guo H, Enomoto M, Shang C J 2018 Comp. Mater. Sci. 141 101Google Scholar

    [50]

    Shu S, Wells P B, Almirall N, Odette G R, Morgan D D 2018 Acta Mater. 157 298Google Scholar

    [51]

    田晓林, 赵宇宏, 田晋忠, 侯华 2018 67 230201Google Scholar

    Tian X L, Zhao Y H, Tian J Z, Hou H 2018 Acta Phys. Sin. 67 230201Google Scholar

    [52]

    Shu S, Wirth B, Wells P, Morgan D, Odette G R 2018 Acta Mater. 146 237Google Scholar

    [53]

    Isheim D, Gagliano M, Fine M, Seidman D 2006 Acta Mater. 54 841Google Scholar

    [54]

    Xie Y P, Zhao S J 2012 Comp. Mater. Sci. 63 329Google Scholar

    [55]

    Zheng Z, Lei L, Zhou Q, Wang W H, Zeng D C, Qiu Z, Hong Y 2019 J. Magn. Magn. Mater. 484 105Google Scholar

    [56]

    Xie Y P, Zhao S J 2011 Comp. Mater. Sci. 50 2586Google Scholar

    [57]

    Ngayam-Happy R, Becquart C S, Domain C, Malerba L 2012 J. Nucl. Mater. 426 198Google Scholar

    [58]

    Vincent E, Becquart C S, Domain C 2006 J. Nucl. Mater. 359 227Google Scholar

    [59]

    Wang X, Qiang W, Shu G, Qiao J, Wu Y 2021 J. Magn. Magn. Mater. 527 167698Google Scholar

    [60]

    Vandenbossche L P, Konstantinović M J, Almazouzi A, Dupré L R 2007 J. Phys. D 40 4114Google Scholar

    [61]

    Kamada Y, Park D G, Takahashi S, Kikuchi H, Kobayashi S, Ara K, Hong J H, Park I G 2007 IEEE. T. Magn. 43 2701Google Scholar

    [62]

    Lo C 2012 AIP Conf. Proc. 1430 1351Google Scholar

    [63]

    Takahashi S, Kubota A, Kobayashi S, Kamada Y, Kikuchi H, Ara K 2007 J. Mater. Process. Technol. 181 199Google Scholar

    [64]

    高阳 2008 先进材料测试仪器基础教程(上册) (北京: 清华大学出版社)

    Gao Y 2008 The Fundamental of Advanced Measuring Instruments for Materials (Vol. 1) (Beijing: Tsinghua University Press) (in Chinese)

    [65]

    Cui S, Jung I H 2017 Calphad 56 241Google Scholar

    [66]

    Miettinen J 2001 Calphad 25 43Google Scholar

  • [1] 刘钟磊, 曹津铭, 王智, 赵宇宏. 相场法探究铁电体涡旋拓扑结构与准同型相界.  , 2023, 72(3): 037702. doi: 10.7498/aps.72.20221898
    [2] 王凯乐, 杨文奎, 史新成, 侯华, 赵宇宏. 相场法研究AlxCuMnNiFe高熵合金富Cu相析出机理.  , 2023, 72(7): 076102. doi: 10.7498/aps.72.20222439
    [3] 郭灿, 康晨瑞, 高莹, 张一弛, 邓英远, 马超, 徐春杰, 梁淑华. 金属基复合材料原位反应相场模型.  , 2022, 71(9): 096401. doi: 10.7498/aps.71.20211737
    [4] 杨辉, 冯泽华, 王贺然, 张云鹏, 陈铮, 信天缘, 宋小蓉, 吴璐, 张静. Fe-Cr合金辐照空洞微结构演化的相场法模拟.  , 2021, 70(5): 054601. doi: 10.7498/aps.70.20201457
    [5] 郭震, 赵宇宏, 孙远洋, 赵宝军, 田晓林, 侯华. 相场法研究Fe-Cu-Mn-Al合金富Cu相析出机制.  , 2021, 70(8): 086401. doi: 10.7498/aps.70.20201843
    [6] 王陶, 李俊杰, 王锦程. 界面润湿性及固相体积分数对颗粒粗化动力学影响的相场法研究.  , 2013, 62(10): 106402. doi: 10.7498/aps.62.106402
    [7] 王雅琴, 王锦程, 李俊杰. 定向倾斜枝晶生长规律及竞争行为的相场法研究.  , 2012, 61(11): 118103. doi: 10.7498/aps.61.118103
    [8] 张宪刚, 宗亚平, 吴艳. 相场再结晶储能释放模型与显微组织演变的模拟研究.  , 2012, 61(8): 088104. doi: 10.7498/aps.61.088104
    [9] 王明光, 赵宇宏, 任娟娜, 穆彦青, 王伟, 杨伟明, 李爱红, 葛洪浩, 侯华. 相场法模拟NiCu合金非等温凝固枝晶生长.  , 2011, 60(4): 040507. doi: 10.7498/aps.60.040507
    [10] 龙文元, 吕冬兰, 夏春, 潘美满, 蔡启舟, 陈立亮. 强迫对流影响二元合金非等温凝固枝晶生长的相场法模拟.  , 2009, 58(11): 7802-7808. doi: 10.7498/aps.58.7802
    [11] 宗亚平, 王明涛, 郭巍. 再结晶和外力场下第二相析出的相场法模拟.  , 2009, 58(13): 161-S168. doi: 10.7498/aps.58.161
    [12] 陈玉娟, 陈长乐. 相场法模拟对流速度对上游枝晶生长的影响.  , 2008, 57(7): 4585-4589. doi: 10.7498/aps.57.4585
    [13] 冯 力, 王智平, 路 阳, 朱昌盛. 二元合金多晶粒的枝晶生长的等温相场模型.  , 2008, 57(2): 1084-1090. doi: 10.7498/aps.57.1084
    [14] 李俊杰, 王锦程, 许 泉, 杨根仓. 外来夹杂物颗粒对枝晶生长形态影响的相场法研究.  , 2007, 56(3): 1514-1519. doi: 10.7498/aps.56.1514
    [15] 路 阳, 王 帆, 朱昌盛, 王智平. 等温凝固多晶粒生长相场法模拟.  , 2006, 55(2): 780-785. doi: 10.7498/aps.55.780
    [16] 龙文元, 蔡启舟, 魏伯康, 陈立亮. 相场法模拟多元合金过冷熔体中的枝晶生长.  , 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [17] 张玉祥, 王锦程, 杨根仓, 周尧和. 相场法模拟弹性场对沉淀相变组织演化及相平衡成分的影响.  , 2006, 55(5): 2433-2438. doi: 10.7498/aps.55.2433
    [18] 杨 弘, 张清光, 陈 民. 热扰动对过冷熔体中二次枝晶生长影响的相场法模拟.  , 2005, 54(8): 3740-3744. doi: 10.7498/aps.54.3740
    [19] 李梅娥, 杨根仓, 周尧和. 二元合金高速定向凝固过程的相场法数值模拟.  , 2005, 54(1): 454-459. doi: 10.7498/aps.54.454
    [20] 龙文元, 蔡启舟, 陈立亮, 魏伯康. 二元合金等温凝固过程的相场模型.  , 2005, 54(1): 256-262. doi: 10.7498/aps.54.256
计量
  • 文章访问数:  4179
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-11
  • 修回日期:  2021-12-22
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-20

/

返回文章
返回
Baidu
map