搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全介质超表面BIC多参数调控与灵敏度调谐

龙鑫琳 杨惟智 陈智全 许辉 侯海良 张小姣 董玉兰 贺龙辉

引用本文:
Citation:

全介质超表面BIC多参数调控与灵敏度调谐

龙鑫琳, 杨惟智, 陈智全, 许辉, 侯海良, 张小姣, 董玉兰, 贺龙辉

All-dielectric metasurface BIC multi-parameter tuning and sensitivity tuning

LONG Xinlin, YANG Weizhi, CHEN Zhiquan, XU Hui, HOU Hailiang, ZHANG Xiaojiao, DONG Yulan, HE Longhui
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 基于连续域束缚态(Bound states In the Continuum,BIC)的全介质超表面因其具有超高品质因子(Quality factor,Q),能有效增强光与物质的相互作用,而被广泛应用于微纳生物传感领域。本文提出了一种基于BIC的矩形全介质双聚体超表面,并采用有限元方法进行仿真模拟以及使用时域耦合模进行理论分析。针对超表面中两长方对的角度、折射率、宽度和高度等参数,分别设计了4种系统破缺方式,均实现了对称保护型BIC(Symmetry-Protected BIC,SP-BIC)向准BIC(Quasi-BIC,QBIC)模式的转变,获得的最大Q因子高达1.75×104。引入相同的不对称参数后,4种调控方式下的超表面灵敏度几乎处于同一水平,而传感品质因数(Figure Of Merit,FOM)的差异可达103数量级。在同一调控方式下,当破缺参数绝对值相等时,正向破缺的超表面的灵敏度和FOM都高于负向破缺。经优化调节后,超表面的灵敏度和FOM分别达到了395 nm/RIU和3502 RIU-1,其综合性能指标已优于大部分现有研究。该超表面为生物、医疗领域的传感检测提供了有效手段,同时该研究为基于BIC的折射率传感器的设计提供了新思路。
    All-dielectric metasurfaces based on bound states in the continuum (BIC) are widely used in the field of micro-nano biosensors due to their ultra-high quality factor (Q), which can effectively enhance the interaction between light and matter. In this paper, a rectangular all-dielectric dimer metasurface based on BIC is proposed. The finite element method is used for simulation, and time-domain coupled mode theory is employed for theoretical analysis. For the parameters of the two rectangular components in the metasurface, such as their angles, refractive indices, widths, and heights, four different symmetry-breaking modes are designed (Fig. 1). All of these modes realize the transformation from symmetry-protected BIC (SP-BIC) to quasi-BIC (QBIC), with the maximum Q factor reaching 1.75×104 (Fig. 2). These four breaking methods cover the current common SP-BIC breaking methods and provide choices for device design. After introducing the same asymmetric parameters, the QBIC resonance excited by the metasurface under the four control modes is dominated by magnetic dipoles (Fig. 6). The sensitivity of the designed sensor device is almost at the same level, while the difference in figure of merit (FOM) can reach three orders of magnitude (Fig. 7). In addition, under the same control mode, the sensitivity and FOM of the metasurface with positive breaking are higher than those with negative breaking when the absolute values of the breaking parameters are equal (Fig. 8). After optimization and adjustment, the sensitivity and FOM of the metasurface reach 395 nm/RIU and 3502 RIU-1, respectively, and its comprehensive performance index is better than most existing studies (Table 1). The metasurface provides an effective means for sensing detection in the biological and medical fields. At the same time, this research provides a new idea for the design of refractive index sensors based on BIC.
  • [1]

    Liu Z C, Guo T B, Tan Q, Hu Z P, Sun Y W, Fan H X, Zhang Z, Jin Y, He S L 2023 Nano Lett. 23 10441

    [2]

    Chen Z Q, Li P, Zhang S, Chen Y Q, Liu P, Duan H G 2019 Nanotechnology 30 335201

    [3]

    Cheng Y X, Xu H, Yu H F, Huang L Q, Gu Z C, Chen Y F, He L H, Chen Z Q, Hou H L 2025 Acta Phys. Sin. 74 067801 (in Chinese) [成昱轩,许辉,于鸿飞,黄林琴,谷志超,陈玉峰,贺龙辉,陈智全,侯海良 2025 74 067801]

    [4]

    Yang H, Peng M Y, He H R, Yu D, Ou K, Wang Q, Luo X H, Hu Y Q, Jing H, Duan H G 2025 Laser Photonics Rev. 19 2401398

    [5]

    He H R, Yu D, Gu Y J, Yang H, Xu J, Peng M Y, Xie Q, Jiang Y T, Zhang S H, Hu Y Q, Jing H, Duan H G 2025 Laser Photonics Rev. e00564

    [6]

    Yang H, Ou K, Liu Q, Peng M Y, Xie Z W, Jiang Y T, Jia H H, Cheng X B, Jing H, Hu Y Q 2025 Light: Sci. Appl. 14 63

    [7]

    Yang H, Ou K, Wan H Y, Hu Y Q, Wei Z Y, Jia H H, Cheng X B, Liu N, Duan H G 2023 Mater. Today 67 424

    [8]

    Marinica D C, Borisov A G, Shabanov S V 2008 Phys. Rev. Lett. 100 183902

    [9]

    Li Z L, Nie G Z, Wang J H, Zhong F, Zhan S P 2024 Phys. Rev. Applied. 21 034039

    [10]

    Sadrieva Z F, Sinev I S, Koshelev K L, Samusev A, Iorsh I V, Takayama O, Malureanu R, Bogdanov A A, Lavrinenko A V 2017 ACS Photonics 4 723

    [11]

    Plotnik Y, Peleg O, Dreisow F, Heinrich M, Nolte S, Szameit A, Segev M 2011 Phys. Rev. Lett. 107 183901

    [12]

    Cong L Q, Singh R 2019 Adv. Opt. Mater. 7 1900383

    [13]

    Jahani Y, Arvelo E R, Yesilkoy F, Koshelev K, Cianciaruso C, De Palma M, Kivshar Y, Altug H 2021 Nat. Commun. 12 3246

    [14]

    Song S Z, Yu S L, Li H, Zhao T G 2022 Laser Phys. 32 025403

    [15]

    Chen W J, Li M, Zhang W H, Chen Y H 2023 Nanophotonics 12 1147

    [16]

    Zhao J J, Fan X Y, Fang W J, Xiao W X, Sun F X, Li C C, Wei X, Tao J F, Wang Y L, Kumar S 2024 Sensors 24 3943

    [17]

    Li Z L, Xie M X, Nie G Z, Wang J H, Huang L J 2023 J. Phys. Chem. Lett. 14 10762

    [18]

    Zhang T, Huo Y P, Xu C M, Li J M, Zhang Z L 2024 J. Opt. Soc. Am. B 42 50

    [19]

    Liu H G, Zhang X Y, Nan X Y, Zhao E G, Liu H T 2024 Acta Phys. Sin. 73 047802 (in Chinese) [刘会刚,张翔宇,南雪莹,赵二刚,刘海涛 2024 73 047802]

    [20]

    Li N, Chen H, Zhao Y X, Wang Y T, Su Z X, Liu Y, Huang L L 2025 Nanophotonics 14 485

    [21]

    Xu Y L, Yang Y Y, Li H X, Ren L R 2025 J. Mater. Chem. C 13 1747

    [22]

    Yang N N, Lang T T, Cen W Y, Yu Z Y, Xiao M Y, Zhang J H, Qiu Y Q 2023 J. Opt. Soc. Am. B 40 366

    [23]

    Liu J K, Dai H X, Ju J Q, Cheng K 2024 Phys. Chem. Chem. Phys. 26 9462

    [24]

    Liu J K, Lu Z N, Dai H X, Ju J Q, Zhao H W, Cao K Q 2024 J. Opt. 27 015001

    [25]

    Liu W J, Liang Z Z, Qin Z, Shi X Y, Yang F M, Meng D J 2022 Results Phys. 32 105125

    [26]

    Yu S L, Wang Y S, Gao Z, Li H, Song S Z, Yu J G, Zhao T G 2022 Opt. Express 30 4084

    [27]

    Gao J Y, Liu J, Yang H M, Liu H S, Zeng G H, Huang B 2023 Opt. Express 31 44703

    [28]

    Wu Q H, Wang J, Wang W, Lin J, Jin P, Liu S T, Zhou K Y 2024 Opt. Lett. 49 4186

    [29]

    Chen Z Q, Yang H L, Long X L, Xiao Y P, He L H, Nie G Z, Hou H L, Lu X, Xu H 2025 Sci. China-Phys. Mech. Astron. 55 264212 (in Chinese) [陈智全,阳弘黎,龙鑫琳,肖云鹏,贺龙辉,聂国政,侯海良,鲁潇,许辉 2025 中国科学:物理学 力学 天文学 55 264212]

    [30]

    Wang P F, He F Y, Liu J J, Shu F Z, Fang B, Lang T T, Jing X F, Hong Z 2022 Photonics Res. 10 2743

    [31]

    Fan S, Suh W, Joannopoulos J D 2003 J. Opt. Soc. Am. A 20 569

    [32]

    Yu J B, Yao W Z, Qiu M, Li Q 2025 Light: Sci. Appl. 14 174

    [33]

    Koshelev K, Lepeshov S, Liu M K, Bogdanov A, Kivshar Y 2018 Phys. Rev. Lett. 121 193903

    [34]

    Chen W J, Chen Y T, Liu W 2019 Phys. Rev. Lett. 122 153907

    [35]

    Chen W J, Chen Y T, Liu W 2019 Laser Photonics Rev. 13 1900067

    [36]

    Koshelev K, Favraud G, Bogdanov A, Kivshar Y, Fratalocchi A 2019 Nanophotonics 8 725

    [37]

    Papasimakis N, Fedotov V A, Marinov K, Zheludev N I 2009 Phys. Rev. Lett. 103 093901

    [38]

    Kaelberer T, Fedotov V A, Papasimakis N, Tsai D P, Zheludev N I 2010 Science 330 1510

    [39]

    Huang Y W, Chen W T, Wu P C, Fedotov V, Savinov V, Ho Y Z, Chau Y F, Zheludev N I, Tsai D P 2012 Opt. Express 20 1760

    [40]

    Long X L, Chen Z Q, Yang H L, Xiao Y P, He L H, Nie G Z, Zhang X J, Lu X, Hou H L, Xu H 2025 Acta Opt. Sin. 45 1023001 (in Chinese) [龙鑫琳,陈智全,阳弘黎,肖云鹏,贺龙辉,聂国政,张小姣,鲁潇,侯海良,许辉 2025 光学学报 45 1023001]

    [41]

    Wiersig J 2014 Phys. Rev. Lett. 112 203901

    [42]

    Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N, Khajavikhan M 2017 Nature 548 187

    [43]

    Yan D, Shalin A S, Wang Y, Lai Y, Xu Y D, Hang Z H, Cao F, Gao L, Luo J 2025 Phys. Rev. Lett. 134 243802

    [44]

    Fan H Y, Luo J 2022 Acta Phys. Sin. 71 247802 (in Chinese) [范辉颖,罗杰 2022 71 247802]

    [45]

    Özdemir Ş K, Rotter S, Nori F, Yang L 2019 Nat. Mater. 18 783

  • [1] 董耀勇, 吴仪, 郑学军, 王登龙, 赵鹏. 双腔光力系统中基于连续域束缚态的超高分辨率质量传感.  , doi: 10.7498/aps.74.20250063
    [2] 王军辉, 李德琼, 聂国政, 詹杰, 甘龙飞, 陈智全, 兰林锋. 基于准连续体束缚态的近红外高Q全介质超表面生物传感器.  , doi: 10.7498/aps.74.20241752
    [3] 任洋, 李振雄, 张磊, 崔巍, 吴雄雄, 霍亚杉, 何智慧. 基于法布里-珀罗腔的可调谐连续域束缚态及应用.  , doi: 10.7498/aps.73.20240861
    [4] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性.  , doi: 10.7498/aps.73.20231357
    [5] 夏兆生, 刘宇行, 包正, 王丽华, 吴博, 王刚, 王辉, 任信钢, 黄志祥. 基于准连续域束缚态的强圆二色性超表面.  , doi: 10.7498/aps.73.20240834
    [6] 王玥, 王豪杰, 崔子健, 张达篪. 双谐振环金属超表面中的连续域束缚态.  , doi: 10.7498/aps.73.20231556
    [7] 刘会刚, 张翔宇, 南雪莹, 赵二刚, 刘海涛. 基于准连续域束缚态的全介质超构表面双参数传感器.  , doi: 10.7498/aps.73.20231514
    [8] 闫梦, 孙珂, 宁廷银, 赵丽娜, 任莹莹, 霍燕燕. 基于共振波导光栅结构准连续域束缚态的低阈值纳米激光器的数值研究.  , doi: 10.7498/aps.72.20221894
    [9] 张伟, 万静, 蒙列, 罗曜伟, 郭明瑞. D型光纤与微管耦合的微流控折射率传感器.  , doi: 10.7498/aps.71.20221137
    [10] 孟令俊, 王梦宇, 沈远, 杨煜, 徐文斌, 张磊, 王克逸. 具有内参考热补偿功能的三层膜结构微球腔折射率传感器.  , doi: 10.7498/aps.69.20191265
    [11] 张文杰, 刘郁松, 郭浩, 韩星程, 蔡安江, 李圣昆, 赵鹏飞, 刘俊. 双螺线圈射频共振结构增强硅空位自旋传感灵敏度方法.  , doi: 10.7498/aps.69.20200765
    [12] 廖文英, 范万德, 李海鹏, 隋佳男, 曹学伟. 准晶体结构光纤表面等离子体共振传感器特性研究.  , doi: 10.7498/aps.64.064213
    [13] 王俊平, 戚苏阳, 刘士钢. 基于版图优化的综合灵敏度模型.  , doi: 10.7498/aps.63.128503
    [14] 李辉栋, 傅海威, 邵敏, 赵娜, 乔学光, 刘颖刚, 李岩, 闫旭. 基于光纤气泡和纤芯失配的Mach-Zehnder干涉液体折射率传感器.  , doi: 10.7498/aps.62.214209
    [15] 刘颖刚, 车伏龙, 贾振安, 傅海威, 王宏亮, 邵敏. 微纳光纤布拉格光栅折射率传感特性研究.  , doi: 10.7498/aps.62.104218
    [16] 江莺, 梁大开, 曾捷, 倪晓宇. 监测点波长对高双折射光纤环镜轴向应变灵敏度的影响.  , doi: 10.7498/aps.62.064216
    [17] 梁瑞冰, 孙琪真, 沃江海, 刘德明. 微纳尺度光纤布拉格光栅折射率传感的理论研究.  , doi: 10.7498/aps.60.104221
    [18] 龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令. 光纤法布里-珀罗复合结构折射率传感器的灵敏度分析.  , doi: 10.7498/aps.60.064202
    [19] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析.  , doi: 10.7498/aps.59.4732
    [20] 刘 迎, 王利军, 郭云峰, 张小娟, 高宗慧, 田会娟. 空间分辨漫反射的高阶参量灵敏度.  , doi: 10.7498/aps.56.2119
计量
  • 文章访问数:  100
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-12

/

返回文章
返回
Baidu
map