搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于共振波导光栅结构准连续域束缚态的低阈值纳米激光器的数值研究

闫梦 孙珂 宁廷银 赵丽娜 任莹莹 霍燕燕

引用本文:
Citation:

基于共振波导光栅结构准连续域束缚态的低阈值纳米激光器的数值研究

闫梦, 孙珂, 宁廷银, 赵丽娜, 任莹莹, 霍燕燕

Numerical study of the low- threshold nanolaser based on quasi-bound states in the continuum supported by resonant waveguide grating structures

Yan Meng, Sun Ke, Ning Ting-Yin, Zhao Li-Na, Ren Ying-Ying, Huo Yan-Yan
PDF
HTML
导出引用
  • 纳米激光作为一种纳米级相干光源,是光电集成芯片的关键器件. 激光器进一步小型化的阻碍在于随着激光器谐振腔体积的减小, 其损耗迅速增大. 连续域束缚态(bound states in the continuum,BICs)能有效降低全介质结构的辐射损耗. 本文提出一种基于全介质共振波导光栅(resonant waveguide grating structures, RWGs)准BIC的纳米激光器,可有效降低纳米激光器的阈值. 将传统两部分光栅转换为四部分光栅,可激发波导结构的准BIC模式. 本文数值研究了该模式的受激辐射放大特性. 结果表明: TE偏振光照射下, 基于四部分光栅的RWG结构的纳米激光阈值比基于传统RWG结构的阈值低20.86%. TM偏振光照射时, 阈值比传统RWG结构降低了3.3倍. 而且TE偏振光照射时纳米激光的阈值比TM偏振光照射时阈值大约低一个数量级, 这是因为TE偏振光照射时,结构的电场局域在波导层内, 增强了光与增益材料的相互作用, 从而降低了纳米激光的阈值.
    As a nanoscale coherent light source, semiconductor nanolaser is a key device for future optoelectronic integrated chips. The obstacle of further miniaturization of the nanolaser is that the loss increases rapidly with the decrease of cavity volume. The bound states in the continuum (BICs) can overcome the high radiative loss. Here, we propose a nanolaser based on quasi-BIC mode supported by all-dielectric resonant waveguide grating (RWG), which can effectively reduce the threshold of nanolaser. The quasi-BIC mode of the waveguide can be excited when the traditional two-part grating becomes a four-part grating. The laser behavior of the quasi-BIC is studied by finite difference-time-domain (FDTD) numerical simulation. The results show that the threshold of the naolaser based on four part-grating RWG is 20.86% lower than that of nanolaser based on two part-grating RWG when subjected to TE-polarized light irradiation. For the TM-polarized light irradiation, the threshold is 3.3 times lower than the threshold for the nanolaser based on four part-grating RWG. We also find that the threshold of the nanolaser under TE-polarized light irradiation is about one order of magnitude lower than that under TM-polarized light irradiation. Because the electric field of the structure is well confined inside the waveguide layer under TE-polarized light, which can enhance the interaction between light and gain materials and reduce the threshold of nanolasers.
      通信作者: 霍燕燕, yanyanhuo2014@sdnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:91950106, 12174228)和山东省自然科学基金(批准号: ZR2019MA024)资助的课题.
      Corresponding author: Huo Yan-Yan, yanyanhuo2014@sdnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91950106, 12174228), and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019MA024).
    [1]

    Li C, Liu Z, Chen J, Gao Y, Li M L, Zhang Q 2019 Nanophotonics 8 2091Google Scholar

    [2]

    Du W, Li C H, Sun J C, Xu H, Yu P, Ren A B, Wu J, Wang Z M 2020 Laser Photonics Rev. 14 2000271Google Scholar

    [3]

    Ma R M, Oulton R F 2019 Nat. Nanotechnol. 14 12Google Scholar

    [4]

    Saxena D, Mokkapati S, Jagadish C 2012 IEEE Photon. J. 4 582Google Scholar

    [5]

    Moitra P, Slovick B A, Li W, Kraychencko II, Briggs D P, Krishnamurthy S, Valentine J 2015 ACS Photonics 2 692Google Scholar

    [6]

    Bi K, Wang Q M, Xu J C, Chen L H, Lan C W, Lei M 2021 Adv. Opt. Mater. 9 2001474Google Scholar

    [7]

    Qiu J L, Liu X Y, Liang Z Z, Zhu J F 2021 Opt. Lett. 46 849Google Scholar

    [8]

    Jahani S, Jacob Z 2016 Nat. Nanotechnol. 11 23Google Scholar

    [9]

    Ma Z J, Hanham S M, Albella P, Ng B H, Lu H T, Gong Y D, Maier S A, Hong M H 2016 ACS Photonics 3 1010Google Scholar

    [10]

    Tian J Y, Li Q, Belov P A, Sinha R K, Qian W P, Qiu M 2020 ACS Photonics 7 1436Google Scholar

    [11]

    Neuman J V, Wigner E 1929 Phys. Z 30 467Google Scholar

    [12]

    Friedrich H, Wintgen D 1985 Phys. Rev. A 32 3231Google Scholar

    [13]

    Bogdanov A A, Koshelev K L, Kapitanova P V, Rybin M V, Gladyshev S A, Sadrieva Z F, Samusev K B, Kicshar Y S, Limonov M F 2019 Adv. Photonics 1 016001Google Scholar

    [14]

    Joseph S, Pandey S, Sarkar S, Joseph J 2021 Nanophotonics 10 4175Google Scholar

    [15]

    Zhang Y B, Liu W W, Li Z C, Li Z, Cheng H, Chen S Q, Tian J G 2018 Opt. Lett. 43 1842Google Scholar

    [16]

    Huo Y Y, Zhang X, Yan M, Sun K, Jiang S Z, Ning T Y, Zhao L N 2022 Opt. Express 30 19030Google Scholar

    [17]

    Foley J M, Young S M, Phillips J D 2014 Phys. Rev. B 89 165111Google Scholar

    [18]

    Zhang M D, Zhang X D 2015 Sci. Rep. 5 8266Google Scholar

    [19]

    杜芊, 陈溢杭 2021 70 154206Google Scholar

    Du Q, Chen Y H 2021 Acta Phys. Sin. 70 154206Google Scholar

    [20]

    Yang J H, Huang Z T, Maksimov D N, Pankin P S, Timofeev I V, Hong K B, Li H, Chen J W, Hsu C Y, Liu Y Y, Lu T C, Lin T R, Yang C S, Chen K P 2021 Laser Photonics Rev. 15 2100118Google Scholar

    [21]

    Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kante B 2017 Nature 541 196Google Scholar

    [22]

    Hwang M S, Lee H C, Kim K H, Jeong K Y, Kwon S H, Koshelev K, Kivshar Y, Park H G 2021 Nat. Commun. 12 4135Google Scholar

    [23]

    Azzam S I, Chaudhuri K, Lagutchev A, Jacob Z, Kim Y L, Shalaev V M, Boltasseva A, Kildishev A V 2021 Laser Photonics Rev. 15 2000411Google Scholar

    [24]

    Bi W L, Zhang X, Yan M, Zhao L N, Ning T Y, Huo Y Y 2021 Opt. Express 29 12634Google Scholar

    [25]

    Zhang H R, Wang T, Tian J Y, Sun J C, Li S X, De Leon I, Zaccaria R P, Peng L, Gao F, Lin X, Chen H S, Wang G F 2022 Nanophotonics 11 297Google Scholar

    [26]

    Ning T Y, Li X, Zhao Y, Yin L Y, Huo Y Y, Zhao L N, Yue Q Y 2020 Opt. Express 28 34024Google Scholar

    [27]

    Wu F, Wu J J, Guo Z W, Jiang H T, Sun Y, Li Y H, Ren J, Chen H 2019 Phys. Rev. Appl. 12 014028Google Scholar

    [28]

    Liu W X, Li Y H, Jiang H T, Lai Z Q, Chen H 2013 Opt. Lett. 38 163Google Scholar

    [29]

    Quaranta G, Basset G, Martin O J F, Gallinet B 2018 Laser Photonics Rev. 12 1800017Google Scholar

    [30]

    Adachi S 1989 J. Appl. Phys. 66 6030Google Scholar

    [31]

    Yariv A, Yeh P 1984 Optical Waves in Crystals ( New York: Wiley)

    [32]

    Sun K L, Jiang H, Bykov D A, Van V, Levy U, Cai Y J, Han Z H 2022 Photonics Res. 10 1575Google Scholar

    [33]

    Chang S H, Taflove A 2004 Opt. Express 12 3827Google Scholar

    [34]

    Zhao Y W, Dong Z Y, Miao S S, Deng A H, Yang J, Wang B 2006 J. Appl. Phys. 100 123519Google Scholar

  • 图 1  硅衬底上四部分光栅的RWG结构单元及入射光示意图

    Fig. 1.  Schematic diagram of the four part-grating RWG structure and incidence light on a silica substrate.

    图 2  波导层中TE0(a)和TM0(b)导模的色散关系曲线(黑色实线), 以及在不同入射角下的kx = kx, i (i = –1, –2)色散曲线, 1° (红色虚线), 5° (绿色虚线), 10° (蓝色虚线), 15° (青色虚线).

    Fig. 2.  Dispersion relations of the TE0 guide mode (a) and TM0 guide mode (b) in the waveguide layer (black solid line), and kx = kx, i (i = –1, –2) under different angle of incidence, 1° (red dashed lines), 5° (green dashed lines), 10° (blue dashed lines), 15° (cyan dashed lines), respectively.

    图 3  (a)(b) θ = 5°时, 不同几何参数δ下的RWG结构在TE(a)和TM(b)偏振光照射下λA的反射谱; (c)在TE和TM偏振光照射下RWG结构的Q因子与δ的函数关系; (d) δ = 0.2时RWG结构分别在TE和TM偏振光照射下的共振波长与入射角的关系

    Fig. 3.  (a)(b) Reflection spectra near λA of the RWG structure for different geometric parameters δ at θ = 5° under TE- (a) and TM-polarized (b) light irradiation; (c) Dependence of Q-factor of the RWG structure on δ under TE- and TM-polarized light irradiation; (d) δ = 0.2, the relation of resonance wavelength with the angle of incidence at the RWG structure under TE- and TM-polarized light irradiation.

    图 4  (a)TE偏振光照射时, RWG结构在不同几何参数δ下反射峰处对应的电场(E/E0)分布; (b)(c) TM偏振光照射时, RWG结构在不同几何参数δ下反射峰处对应的磁场(H/H0) (b)和电场(E/E0) (c)分布

    Fig. 4.  (a) The electric field (E/E0) distribution corresponding to the reflectance peaks of the RWG structure with different $\textit{δ}$ under TE-polarized light irradiation; (b)(c) The magnetic field (H/H0) (b) and the electric field (E/E0) (c) distributions corresponding to the reflectance peaks of the RWG structure with different $\textit{δ}$ when under TM-polarized light irradiation.

    图 5  δ = 0.1时RWG结构分别在TE(a)和TM(b)偏振光照射下所支持的BIC/准BIC模式的能带结构. 黑色圆圈处为准BIC模式, 插图为该处的电场(TE)和磁场(TM)分布

    Fig. 5.  δ = 0.1, the band structure of the BIC/quasi-BIC mode supported by the RWG structure under TE-(a) and TM-polarized (b) light irradiation.The black circle corresponds to the quasi-BIC mode. The insets show the electric field (TE) and magnetic field (TM) distribution of the quasi-BIC modes.

    图 6  半导体增益介质InP的能级图

    Fig. 6.  The energy level diagram of the semiconductor gain medium InP.

    图 7  TE (a)(b)和TM (c)(d)偏振光照射时, 基于四部分光栅的RWG结构的纳米激光器的激射行为; (a)和(c) 归一化发射光谱随泵浦光功率密度的变化; (b)和(d) 归一化的最大发射强度和共振峰线宽随泵浦功率密度的变化. 插图为阈值处的电场和磁场分布

    Fig. 7.  Lasing actions of the four part-grating RWG structure under TE (a)(b) and TM-polarized (c)(d) light irradiation; (a)(c) Evolution of the normalized emission spectra as a function of pump optical power density; (b)(d)Evolution of the normalized maximum emission intensity and emission spectra line-width as a function of pump fluence. The insets show the electric field and magnetic field distributions at threshold.

    图 8  TE(a)和TM(b)偏振光照射下, 不同几何参数δ的RWG结构的归一化最大发射强度随泵浦光功率密度的变化

    Fig. 8.  The normalized maximum emission intensity of RWG structure with different geometric parameters δ under TE-(a) and TM-polarized (b) light irradiation as a function of the input pump fluence.

    Baidu
  • [1]

    Li C, Liu Z, Chen J, Gao Y, Li M L, Zhang Q 2019 Nanophotonics 8 2091Google Scholar

    [2]

    Du W, Li C H, Sun J C, Xu H, Yu P, Ren A B, Wu J, Wang Z M 2020 Laser Photonics Rev. 14 2000271Google Scholar

    [3]

    Ma R M, Oulton R F 2019 Nat. Nanotechnol. 14 12Google Scholar

    [4]

    Saxena D, Mokkapati S, Jagadish C 2012 IEEE Photon. J. 4 582Google Scholar

    [5]

    Moitra P, Slovick B A, Li W, Kraychencko II, Briggs D P, Krishnamurthy S, Valentine J 2015 ACS Photonics 2 692Google Scholar

    [6]

    Bi K, Wang Q M, Xu J C, Chen L H, Lan C W, Lei M 2021 Adv. Opt. Mater. 9 2001474Google Scholar

    [7]

    Qiu J L, Liu X Y, Liang Z Z, Zhu J F 2021 Opt. Lett. 46 849Google Scholar

    [8]

    Jahani S, Jacob Z 2016 Nat. Nanotechnol. 11 23Google Scholar

    [9]

    Ma Z J, Hanham S M, Albella P, Ng B H, Lu H T, Gong Y D, Maier S A, Hong M H 2016 ACS Photonics 3 1010Google Scholar

    [10]

    Tian J Y, Li Q, Belov P A, Sinha R K, Qian W P, Qiu M 2020 ACS Photonics 7 1436Google Scholar

    [11]

    Neuman J V, Wigner E 1929 Phys. Z 30 467Google Scholar

    [12]

    Friedrich H, Wintgen D 1985 Phys. Rev. A 32 3231Google Scholar

    [13]

    Bogdanov A A, Koshelev K L, Kapitanova P V, Rybin M V, Gladyshev S A, Sadrieva Z F, Samusev K B, Kicshar Y S, Limonov M F 2019 Adv. Photonics 1 016001Google Scholar

    [14]

    Joseph S, Pandey S, Sarkar S, Joseph J 2021 Nanophotonics 10 4175Google Scholar

    [15]

    Zhang Y B, Liu W W, Li Z C, Li Z, Cheng H, Chen S Q, Tian J G 2018 Opt. Lett. 43 1842Google Scholar

    [16]

    Huo Y Y, Zhang X, Yan M, Sun K, Jiang S Z, Ning T Y, Zhao L N 2022 Opt. Express 30 19030Google Scholar

    [17]

    Foley J M, Young S M, Phillips J D 2014 Phys. Rev. B 89 165111Google Scholar

    [18]

    Zhang M D, Zhang X D 2015 Sci. Rep. 5 8266Google Scholar

    [19]

    杜芊, 陈溢杭 2021 70 154206Google Scholar

    Du Q, Chen Y H 2021 Acta Phys. Sin. 70 154206Google Scholar

    [20]

    Yang J H, Huang Z T, Maksimov D N, Pankin P S, Timofeev I V, Hong K B, Li H, Chen J W, Hsu C Y, Liu Y Y, Lu T C, Lin T R, Yang C S, Chen K P 2021 Laser Photonics Rev. 15 2100118Google Scholar

    [21]

    Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kante B 2017 Nature 541 196Google Scholar

    [22]

    Hwang M S, Lee H C, Kim K H, Jeong K Y, Kwon S H, Koshelev K, Kivshar Y, Park H G 2021 Nat. Commun. 12 4135Google Scholar

    [23]

    Azzam S I, Chaudhuri K, Lagutchev A, Jacob Z, Kim Y L, Shalaev V M, Boltasseva A, Kildishev A V 2021 Laser Photonics Rev. 15 2000411Google Scholar

    [24]

    Bi W L, Zhang X, Yan M, Zhao L N, Ning T Y, Huo Y Y 2021 Opt. Express 29 12634Google Scholar

    [25]

    Zhang H R, Wang T, Tian J Y, Sun J C, Li S X, De Leon I, Zaccaria R P, Peng L, Gao F, Lin X, Chen H S, Wang G F 2022 Nanophotonics 11 297Google Scholar

    [26]

    Ning T Y, Li X, Zhao Y, Yin L Y, Huo Y Y, Zhao L N, Yue Q Y 2020 Opt. Express 28 34024Google Scholar

    [27]

    Wu F, Wu J J, Guo Z W, Jiang H T, Sun Y, Li Y H, Ren J, Chen H 2019 Phys. Rev. Appl. 12 014028Google Scholar

    [28]

    Liu W X, Li Y H, Jiang H T, Lai Z Q, Chen H 2013 Opt. Lett. 38 163Google Scholar

    [29]

    Quaranta G, Basset G, Martin O J F, Gallinet B 2018 Laser Photonics Rev. 12 1800017Google Scholar

    [30]

    Adachi S 1989 J. Appl. Phys. 66 6030Google Scholar

    [31]

    Yariv A, Yeh P 1984 Optical Waves in Crystals ( New York: Wiley)

    [32]

    Sun K L, Jiang H, Bykov D A, Van V, Levy U, Cai Y J, Han Z H 2022 Photonics Res. 10 1575Google Scholar

    [33]

    Chang S H, Taflove A 2004 Opt. Express 12 3827Google Scholar

    [34]

    Zhao Y W, Dong Z Y, Miao S S, Deng A H, Yang J, Wang B 2006 J. Appl. Phys. 100 123519Google Scholar

  • [1] 刘会刚, 张翔宇, 南雪莹, 赵二刚, 刘海涛. 基于准连续域束缚态的全介质超构表面双参数传感器.  , 2024, 73(4): 047802. doi: 10.7498/aps.73.20231514
    [2] 孟祥裕, 李涛, 余彬彬, 邰永航. 探究四聚体超表面中多极准连续域束缚态的调控机制.  , 2024, 73(10): 107801. doi: 10.7498/aps.73.20240272
    [3] 屠秉晟. 少电子离子束缚态电子g因子精密测量.  , 2024, 73(20): 203103. doi: 10.7498/aps.73.20240683
    [4] 夏兆生, 刘宇行, 包正, 王丽华, 吴博, 王刚, 王辉, 任信钢, 黄志祥. 基于准连续域束缚态的强圆二色性超表面.  , 2024, 73(17): 178102. doi: 10.7498/aps.73.20240834
    [5] 任洋, 李振雄, 张磊, 崔巍, 吴雄雄, 霍亚杉, 何智慧. 基于法布里-珀罗腔的可调谐连续域束缚态及应用.  , 2024, 73(17): 174205. doi: 10.7498/aps.73.20240861
    [6] 王玥, 王豪杰, 崔子健, 张达篪. 双谐振环金属超表面中的连续域束缚态.  , 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [7] 杜芊, 陈溢杭. 硅纳米颗粒阵列中准连续域束缚态诱导三次谐波增强效应.  , 2021, 70(15): 154206. doi: 10.7498/aps.70.20210332
    [8] 蒋培, 周沛, 李念强, 穆鹏华, 李孝峰. 外场调控下的纳米激光时延隐藏及不可预测性提升.  , 2021, 70(11): 114201. doi: 10.7498/aps.70.20210049
    [9] 令维军, 夏涛, 董忠, 左银艳, 李可, 刘勍, 路飞平, 赵小龙, 王勇刚. 基于单壁碳纳米管调Q锁模低阈值Tm,Ho:LiLuF4激光器.  , 2018, 67(1): 014201. doi: 10.7498/aps.67.20171748
    [10] 刘储, 关宝璐, 米国鑫, 廖翌如, 刘振扬, 李建军, 徐晨. 低阈值单横模852 nm半导体激光器.  , 2017, 66(8): 084205. doi: 10.7498/aps.66.084205
    [11] 杨志刚, 吴婷婷, 刘金明. 基于低Q腔光子Faraday旋转的远程态制备.  , 2016, 65(2): 020302. doi: 10.7498/aps.65.020302
    [12] 刘丽娟, 黄文彬, 刁志辉, 张桂洋, 彭增辉, 刘永刚, 宣丽. 基于聚合物支撑形貌液晶/聚合物光栅的低阈值分布反馈式激光器.  , 2014, 63(19): 194202. doi: 10.7498/aps.63.194202
    [13] 徐韵, 李云鹏, 金璐, 马向阳, 杨德仁. 脉冲激光沉积法制备的ZnO薄膜的低阈值电抽运紫外随机激射.  , 2013, 62(8): 084207. doi: 10.7498/aps.62.084207
    [14] 万文坚, 尹嵘, 谭智勇, 王丰, 韩英军, 曹俊诚. 2.9THz束缚态向连续态跃迁量子级联激光器研制.  , 2013, 62(21): 210701. doi: 10.7498/aps.62.210701
    [15] 柴 路, 颜 石, 薛迎红, 刘庆文, 王清月, 苏良碧, 徐晓东, 赵广军, 徐 军. 共掺Na+的Yb3+∶CaF2晶体的荧光分析与低阈值激光运转.  , 2007, 56(6): 3553-3558. doi: 10.7498/aps.56.3553
    [16] 薛迎红, 王清月, 柴 路, 刘庆文, 赵广军, 苏良碧, 徐晓东, 徐 军. LD抽运Yb:GSO实现1090 nm低阈值激光运转.  , 2006, 55(1): 456-459. doi: 10.7498/aps.55.456
    [17] 令维军, 郑加安, 贾玉磊, 魏志义. 低阈值飞秒钛宝石激光器的理论研究.  , 2005, 54(4): 1619-1623. doi: 10.7498/aps.54.1619
    [18] 令维军, 魏志义, 孙敬华, 王兆华, 田金荣, 贾玉磊, 王 鹏, 韩海年. 低阈值掺钛蓝宝石激光器实验研究.  , 2005, 54(9): 4182-4185. doi: 10.7498/aps.54.4182
    [19] 史庆藩, 郑俊娟, 王 琪. 微波谐振腔Q值对磁激子振幅不稳定态阈值的影响.  , 2004, 53(10): 3535-3539. doi: 10.7498/aps.53.3535
    [20] 周效信, 李白文. 强激光场中原子的束缚态和连续态对高次谐波的影响.  , 2001, 50(10): 1902-1906. doi: 10.7498/aps.50.1902
计量
  • 文章访问数:  4912
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-29
  • 修回日期:  2022-11-14
  • 上网日期:  2022-12-02
  • 刊出日期:  2023-02-20

/

返回文章
返回
Baidu
map