-
As a novel hybrid quantum system, cavity optomechanical system shows super strong coupling strength, extremely low noise level and considerable coherent time under superconducting condition. In this paper, we briefly introduce basic principles of cavity optomechanics and cavity optomechanical systems. Meanwhile, we also classify the widely studied cavity optomechanical systems as five categories in their materials and structures. Significant parameters of these optomechanical systems, such as quality factor, mass and vibrating frequency of mechanical oscillator, are listed in detail. Technical merits and defects of these optomechanical systems are summarized. Furthermore, we introduce the research progress of non-classical microwave quantum states preparation by utilizing generalized cavity optomechanical systems, and we also analyze the performance advancements and remaining problems of this preparation method. In the end, we summarize the application cases at present and look forward to the potential application scenarios in the future. Our summary may be helpful for researchers who are focusing on quantum applications in sensing, radar, navigation, and communication in microwave domain.
-
Keywords:
- cavityoptomechanical system /
- non-classical microwave quantum states /
- microwave-optical entanglement /
- electro-opto-mechanical converter
[1] Walls D F 1983 Nature 306 141
Google Scholar
[2] Tara K, Agarwal G S 1994 Phys. Rev. A 50 2870
Google Scholar
[3] Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777
Google Scholar
[4] Liu C C, Wang D, Sun W Y, Ye L 2017 Quantum Inf. Process. 16 219
Google Scholar
[5] Bennett C H 1992 Phys. Rev. Lett. 68 3121
Google Scholar
[6] Hillery M, Buzek V, Berthiaume A 1999 Phys. Rev. A 59 1829
Google Scholar
[7] Gonzalez E A R, Borne A, Boulanger B, Levenson J A, Bencheikh K 2018 Phys. Rev. Lett. 120 043601
Google Scholar
[8] Gatti L N, Lacalle J 2018 Quantum Inf. Process. 17 192
Google Scholar
[9] Li Q, Li Z L, Chan W H, Zhang S Y, Liu C D 2018 Phys. Lett. A 382 938
Google Scholar
[10] Lloyd S 2008 Science 321 1433
[11] McKinney J D 2014 Nature 507 310
Google Scholar
[12] Lariontsev E G, ZolotoverkhI I 2002 J. Opt. B: Quantum Semiclass. Opt. 4 15
Google Scholar
[13] Kok P, NemotoK, RalphTC, DowlingJP, MilburnGJ 2007 Rev. Mod. Phys. 79 135
Google Scholar
[14] Fürst M, Weier H, Nauerth S, Marangon D G, Weinfurter H 2010 Opt. Express 18 13029
Google Scholar
[15] Cialdi S, Rossi M A C, Benedetti C, Vacchini B, Tamascelli D, Olivares S 2017 Appl. Phys. Lett. 110 081107
Google Scholar
[16] Henty B E, Stancil D D 2004 Phys. Rev. Lett. 93 243904
Google Scholar
[17] Liu F Y, Yu X L, Liang P, Cheng Z G, Han Z Y, Dong B W 2012 Eur. J. Radiol. 81 1455
Google Scholar
[18] Panzer B, Gomez-Garcia D, Leuschen C, Paden J, Rodriguez-Morales F, Patel A 2013 J. Glaciol. 59 244
Google Scholar
[19] Guo B, Wang Y, Li J, Stoica P, Wu R 2006 J. Electromagnet. Wave. 20 53
Google Scholar
[20] Mallet F, Castellanos-Beltran M A, Ku H S, Glancy S, Lehnert K W 2011 Phys. Rev. Lett. 106 220502
Google Scholar
[21] Kurpiers P, Magnard P, Walter T, Royer B, Wallraff A 2018 Nature 558 7709
[22] Filippov S N, Man’ko V I 2012 Opt. Spectrosc. 112 365
Google Scholar
[23] Eichler C, Bozyigit D, Lang C, Steffen L, Fink J, Wallraff A 2011 Phys. Rev. Lett. 106 220503
Google Scholar
[24] Hofheinz M, Huard B, Portier F 2016 C.R.Physique 17 679
Google Scholar
[25] Singh V, Bosman S J, Schneider B H, Blanter Y M, Castellanos-Gomez A, Steele G A 2014 Nat. Nanotechnol. 9 820
Google Scholar
[26] Boner P J 2006 Nuncius. 21 31
Google Scholar
[27] Maxwell J C 1873 Nature 7 478
Google Scholar
[28] Lebedew P 1901 Ann. Phys. 311 433
Google Scholar
[29] Nichols E F, Hull G F 1903 Ann. Phys. 12 225
[30] Meystre P 2013 Ann. Phys-Berlin. 523 215
[31] Braginsky V B, Manukin A B 1967 Sov. Phys JETP. 25 653
[32] Dorsel A, McCullen J D, Meystre P, Vignes E, Walther H 1983 Phys. Rev. Lett. 51 1550
Google Scholar
[33] Fabre C, Pinard M, Bourzeix S, Heidmann A, Giacobino E, Reynaud S 1994 Phys. Rev. A 49 1337
Google Scholar
[34] Barish B C, Weiss R 1999 Phys. Today 52 44
[35] Schliesser A, Riviere R, Anetsberger G, Arcizet O, Kippenberg T J 2008 Nat. Phys. 4 415
Google Scholar
[36] Marquardt F, Harris J G E, Girvin S M 2006 Phys. Rev. Lett. 96 103901
Google Scholar
[37] Carmon T, Cross M C, Vahala K J 2007 Phys. Rev. Lett. 98 167203
Google Scholar
[38] Binnig G, Quate C F, Gerber C 1986 Phys. Rev. Lett. 56 930
Google Scholar
[39] Kippenberg T J, Vahala K J 2008 Science 321 1172
Google Scholar
[40] Chen B, Jiang C, Li J J, Zhu K D 2011 Phys. Rev. A 84 055802
Google Scholar
[41] Perot A, Fabry C 1899 Bull. Astronomique 16 5
[42] Zhang J, Peng K, Braunstein S L 2003 Phys. Rev. A 68 013808
Google Scholar
[43] Vitali D, Mancini S, Tombesi P 2007 J. Phys A-Math. Theor. 40 8055
Google Scholar
[44] Wilson D J, Regal C A, Papp S B, Kimble H J 2009 Phys. Rev. Lett. 103 207204
Google Scholar
[45] Bitarafan M H, Ramp H, Allen T W, Potts C, Rojas X, MacDonald A J R, Davis J P, Decorby R G 2015 J. Opt. Soc. Am. B 32 1214
Google Scholar
[46] Pontin A, Mourounas L S, Geraci A A, Barker P F 2018 New J. Phys. 20 023017
Google Scholar
[47] Delić U, Grass D, Reisenbauer M, Damm T, Weitz M, Kiesel N, Aspelmeyer M 2019 arXiv: 1902.06605
[48] Armani D K, Kippenberg T J, Spillane S M, Vahala K J 2003 Nature 421 925
Google Scholar
[49] Hossein-Zadeh M, Rokhsari H, Hajimiri A, Vahala K J 2006 Phys. Rev. A 74 023813
Google Scholar
[50] Henze R, Pyrlik C, Thies A, Ward J M, Wicht A, Benson O 2013 Appl. Phys. Lett. 102 041104
Google Scholar
[51] Kavungal V, Farrell G, Wu Q, Mallik A K, Semenova Y 2017 J. Lightwave Technol. 36 1757
[52] Choi H, Chen D Y, Du F, Zeto R, Armani A 2019 Photonics Res. 7 926
Google Scholar
[53] Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, Harris J G E 2008 Nature 452 72
Google Scholar
[54] Jayich A M, Harris J G E, Sankey J C, Yang C, Zwickl B M 2010 Nat. Phys. 6 707
Google Scholar
[55] Wang C, Lin Q, He B 2019 Phys. Rev. A 99 023829
Google Scholar
[56] Painter O, Vuckovic J, Scherer A 1999 J. Opt. Soc. Am. B 16 275
Google Scholar
[57] Eichenfield M, Camacho R, Chan J, Vahala K J, Painter O 2009 Nature 459 550
Google Scholar
[58] Safavi-Naeini A H, Hill J T, MeenehanS M, Chan J, Groblacher S, Painter O 2014 Phys. Rev. Lett. 112 153603
Google Scholar
[59] Burek M J, Cohen J D, Meenehan S M, El-Sawah N, Chia C, Ruelle T, Meesala S, Rochman J, Atikian H A, Markham M, Twitchen D J, Lukin M D, Painter O, Lončar M 2015 Optica 3 1404
[60] Riedinger R, Wallucks A, Marinković I, Löschnauer C, Aspelmeyer M, Hong S, Gröblacher S 2018 Nature 556 473
Google Scholar
[61] Rajasekar R, Robinson S 2019 Plasmonics 14 3
Google Scholar
[62] Regal C A, Teufel J D, Lehnert K W 2008 Nat. Phys. 4 555
Google Scholar
[63] Teufel J D, Li D, Allman M S, Cicak K, Simmonds R W 2011 Nature 471 204
Google Scholar
[64] Fink J M, Kalaee M, Pitanti A, Norte R, Heinzle L, Davanco M, Srinivasan K, Painter O 2016 Nat. Commun. 7 12396
Google Scholar
[65] Li Y C, Tang J S, Jiang J L, Pan J Z, Dai X, Wei X Y, Lu Y P, Lu S, Tu X C, Wang H B, Xia K Y, Sun G Z, Wu P H 2019 AIP Adv. 9 015029
Google Scholar
[66] Bienfait A, Satzinger K J, Zhong Y P, Chang H S, Chou M H, Conner C R, Dumur É, Grebel J, Peairs G A, Povey R G, Cleland A N 2019 Science 364 368
Google Scholar
[67] Meschede D, Walther H, Müller G 1985 Phys. Rev. Lett. 54 551
Google Scholar
[68] Haroche S 2013 Rev. Mod. Phys. 85 1083
Google Scholar
[69] Haroche S, Kleppner D 1989 Phys. Today 42 24
[70] Yurke B, Kaminsky P G, Miller R E, Whittaker E A, Smith A D, Silver A H, Simon R W 1988 Phys. Rev. Lett. 60 764
Google Scholar
[71] Martinis J M, Devoret M H, Clarke J 1985 Phys. Rev. Lett. 55 1543
Google Scholar
[72] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162
Google Scholar
[73] Ku H S, Mallet F, Vale L R, Irwin K D, Russek S E, Hilton G C, Lehnert K W 2011 IEEE T. Appl. Supercon. 21 452
Google Scholar
[74] Ku H S, Kindel W F, Mallet F, Glancy S, Irwin K D, Hilton G C, Vale L R, Lehnert K W 2015 Phys. Rev. A 91 042305
Google Scholar
[75] Li P B, Gao S Y, Li F L 2013 Phys. Rev. A 88 0438021
[76] PalomakiTA, Teufel J D, Simmonds R W, Lehnert K W 2013 Science 342 710
Google Scholar
[77] Sete E A, Eleuch H 2014 Phys. Rev. A 89 013841
Google Scholar
[78] Ockeloen-Korppi C F, Damskagg E, Pirkkalainen J M, Heikkilä T T, Massel F, Sillanpää M A 2017 Phys. Rev. Lett. 118 103601
Google Scholar
[79] Barzanjeh S, Guha S, Weedbrook C, Vitali D, Shapiro J. H, Pirandola S 2015 Phys. Rev. Lett. 114 080503
Google Scholar
[80] Aggarwal N, Debnath K, Mahajan S 2014 Int. J. Quantum Inf. 12 14500241
[81] Pan G X, Xiao R J, Zhou L 2016 Int. J. Theor. Phys. 55 329
Google Scholar
[82] Tian L 2015 Ann. Phys.-Berlin 527 1
Google Scholar
[83] TianL 2013 Phys. Rev. Lett. 110 233602
Google Scholar
[84] Andrews R W, Regal C A 2014 Nat. Phys. 114 080503
[85] Abdi M, Tombesi P, Vitali D 2015 Ann. Phys.-Berlin 527 139
Google Scholar
[86] Huang S M 2015 Phys. Rev. A 92 043845
Google Scholar
[87] Xiong B, Li X, Wang X Y, Zhou L 2017 Ann. Phys.-New York 385 757
Google Scholar
[88] Higginbotham A P, Burns P S, Urmey M D, Peterson R W, Kampel N S, Brubaker B M, Smith G, Lehnert K W, Regal C A 2018 Nat. Phys. 14 1038
Google Scholar
[89] Ma P C, Yan L L, Chen G B, Li X W, Liu S J, Zhan Y B 2018 Laser Phys. Lett. 15 035201
Google Scholar
[90] Zhong C C, Wang Z X, Zou C L, Zhang M Z, Han X, Fu W, Xu M R, Shankar S, Devoret M H, Tang H X, Jiang L 2019 arXiv: 1901.08228 v1[quant-ph]
[91] Wang Y D, Clerk A A 2012 Phys. Rev. Lett. 108 153603
Google Scholar
[92] Li B, Li P B, Zhou Y, Ma S L, Li F L 2017 Phys. Rev. A 96 032342
Google Scholar
[93] LaHaye M D 2004 Science 304 74
Google Scholar
[94] 陈雪, 刘晓威, 张可烨, 袁春华, 张卫平 2015 64 164211
Google Scholar
Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211
Google Scholar
[95] Han Y, Cheng J, Zhou L 2012 J. Mod. Optic. 59 1336
Google Scholar
[96] Qi T, Han Y, Zhou L 2013 J. Mod. Optic. 60 431
Google Scholar
[97] Akram M J, Ghafoor F, Saif F 2014 J. Phys. B-At. Mol. Opt. 48 65502
[98] Tsang M 2010 Phys. Rev. A 81 063837
Google Scholar
[99] Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W, Simmonds R W 2011 Nature 475 359
Google Scholar
[100] Threepak T, Luangvilay X, Mitatha S, Yupapin P P 2010 Microw. Opt. Techn. Lett. 52 1353
Google Scholar
-
表 1 5种主要腔光力系统的研究现状总结
Table 1. Summary for current research states of 5 main cavity optomechanical systems.
类别 品质因数水平 振子质量水平 振子频率水平 优势 不足 法布里-珀罗腔 104 kg—pg kHz—MHz 技术成熟, 应用广泛 品质因数水平较低, 耗散较大、不易集成 回音壁腔 109 (微球腔)
108 (微环腔)ng—fg MHz—GHz 光力耦合度高, 构造灵活,
腔内光子寿命长工艺要求高、成本高 振动薄膜腔 105 pg MHz 结构简单、灵活 耗散较大、不易集成 光子晶体腔 106 fg GHz 可利用自由度多, 片上可扩展
性好, 精确的模式控制工艺复杂 超导微波腔 107 pg MHz 可高度集成, 与超导器件兼容,
腔的稳定性好, 热噪声水平低超低温, 电磁噪声谱较宽 表 2 基于腔光力系统的微波非经典量子态制备
Table 2. Preparations of non-classical quantum statesof microwave based on cavity opto-mechanical system
腔光力系统类型 作用类型 模式数 腔类型 制备的微波非经典量子态 腔电力系统 光子-声子 2 微波腔 连续变量微波纠缠态, 微波压缩态, 微波-机械
振子谐振模纠缠态腔电光力系统 光子-声子-光子 3 微波腔, 光腔 连续、离散变量微波纠缠态, 微波单光子Fock态,
微波-机械振子谐振模纠缠态, 微波-光纠缠态 -
[1] Walls D F 1983 Nature 306 141
Google Scholar
[2] Tara K, Agarwal G S 1994 Phys. Rev. A 50 2870
Google Scholar
[3] Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777
Google Scholar
[4] Liu C C, Wang D, Sun W Y, Ye L 2017 Quantum Inf. Process. 16 219
Google Scholar
[5] Bennett C H 1992 Phys. Rev. Lett. 68 3121
Google Scholar
[6] Hillery M, Buzek V, Berthiaume A 1999 Phys. Rev. A 59 1829
Google Scholar
[7] Gonzalez E A R, Borne A, Boulanger B, Levenson J A, Bencheikh K 2018 Phys. Rev. Lett. 120 043601
Google Scholar
[8] Gatti L N, Lacalle J 2018 Quantum Inf. Process. 17 192
Google Scholar
[9] Li Q, Li Z L, Chan W H, Zhang S Y, Liu C D 2018 Phys. Lett. A 382 938
Google Scholar
[10] Lloyd S 2008 Science 321 1433
[11] McKinney J D 2014 Nature 507 310
Google Scholar
[12] Lariontsev E G, ZolotoverkhI I 2002 J. Opt. B: Quantum Semiclass. Opt. 4 15
Google Scholar
[13] Kok P, NemotoK, RalphTC, DowlingJP, MilburnGJ 2007 Rev. Mod. Phys. 79 135
Google Scholar
[14] Fürst M, Weier H, Nauerth S, Marangon D G, Weinfurter H 2010 Opt. Express 18 13029
Google Scholar
[15] Cialdi S, Rossi M A C, Benedetti C, Vacchini B, Tamascelli D, Olivares S 2017 Appl. Phys. Lett. 110 081107
Google Scholar
[16] Henty B E, Stancil D D 2004 Phys. Rev. Lett. 93 243904
Google Scholar
[17] Liu F Y, Yu X L, Liang P, Cheng Z G, Han Z Y, Dong B W 2012 Eur. J. Radiol. 81 1455
Google Scholar
[18] Panzer B, Gomez-Garcia D, Leuschen C, Paden J, Rodriguez-Morales F, Patel A 2013 J. Glaciol. 59 244
Google Scholar
[19] Guo B, Wang Y, Li J, Stoica P, Wu R 2006 J. Electromagnet. Wave. 20 53
Google Scholar
[20] Mallet F, Castellanos-Beltran M A, Ku H S, Glancy S, Lehnert K W 2011 Phys. Rev. Lett. 106 220502
Google Scholar
[21] Kurpiers P, Magnard P, Walter T, Royer B, Wallraff A 2018 Nature 558 7709
[22] Filippov S N, Man’ko V I 2012 Opt. Spectrosc. 112 365
Google Scholar
[23] Eichler C, Bozyigit D, Lang C, Steffen L, Fink J, Wallraff A 2011 Phys. Rev. Lett. 106 220503
Google Scholar
[24] Hofheinz M, Huard B, Portier F 2016 C.R.Physique 17 679
Google Scholar
[25] Singh V, Bosman S J, Schneider B H, Blanter Y M, Castellanos-Gomez A, Steele G A 2014 Nat. Nanotechnol. 9 820
Google Scholar
[26] Boner P J 2006 Nuncius. 21 31
Google Scholar
[27] Maxwell J C 1873 Nature 7 478
Google Scholar
[28] Lebedew P 1901 Ann. Phys. 311 433
Google Scholar
[29] Nichols E F, Hull G F 1903 Ann. Phys. 12 225
[30] Meystre P 2013 Ann. Phys-Berlin. 523 215
[31] Braginsky V B, Manukin A B 1967 Sov. Phys JETP. 25 653
[32] Dorsel A, McCullen J D, Meystre P, Vignes E, Walther H 1983 Phys. Rev. Lett. 51 1550
Google Scholar
[33] Fabre C, Pinard M, Bourzeix S, Heidmann A, Giacobino E, Reynaud S 1994 Phys. Rev. A 49 1337
Google Scholar
[34] Barish B C, Weiss R 1999 Phys. Today 52 44
[35] Schliesser A, Riviere R, Anetsberger G, Arcizet O, Kippenberg T J 2008 Nat. Phys. 4 415
Google Scholar
[36] Marquardt F, Harris J G E, Girvin S M 2006 Phys. Rev. Lett. 96 103901
Google Scholar
[37] Carmon T, Cross M C, Vahala K J 2007 Phys. Rev. Lett. 98 167203
Google Scholar
[38] Binnig G, Quate C F, Gerber C 1986 Phys. Rev. Lett. 56 930
Google Scholar
[39] Kippenberg T J, Vahala K J 2008 Science 321 1172
Google Scholar
[40] Chen B, Jiang C, Li J J, Zhu K D 2011 Phys. Rev. A 84 055802
Google Scholar
[41] Perot A, Fabry C 1899 Bull. Astronomique 16 5
[42] Zhang J, Peng K, Braunstein S L 2003 Phys. Rev. A 68 013808
Google Scholar
[43] Vitali D, Mancini S, Tombesi P 2007 J. Phys A-Math. Theor. 40 8055
Google Scholar
[44] Wilson D J, Regal C A, Papp S B, Kimble H J 2009 Phys. Rev. Lett. 103 207204
Google Scholar
[45] Bitarafan M H, Ramp H, Allen T W, Potts C, Rojas X, MacDonald A J R, Davis J P, Decorby R G 2015 J. Opt. Soc. Am. B 32 1214
Google Scholar
[46] Pontin A, Mourounas L S, Geraci A A, Barker P F 2018 New J. Phys. 20 023017
Google Scholar
[47] Delić U, Grass D, Reisenbauer M, Damm T, Weitz M, Kiesel N, Aspelmeyer M 2019 arXiv: 1902.06605
[48] Armani D K, Kippenberg T J, Spillane S M, Vahala K J 2003 Nature 421 925
Google Scholar
[49] Hossein-Zadeh M, Rokhsari H, Hajimiri A, Vahala K J 2006 Phys. Rev. A 74 023813
Google Scholar
[50] Henze R, Pyrlik C, Thies A, Ward J M, Wicht A, Benson O 2013 Appl. Phys. Lett. 102 041104
Google Scholar
[51] Kavungal V, Farrell G, Wu Q, Mallik A K, Semenova Y 2017 J. Lightwave Technol. 36 1757
[52] Choi H, Chen D Y, Du F, Zeto R, Armani A 2019 Photonics Res. 7 926
Google Scholar
[53] Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, Harris J G E 2008 Nature 452 72
Google Scholar
[54] Jayich A M, Harris J G E, Sankey J C, Yang C, Zwickl B M 2010 Nat. Phys. 6 707
Google Scholar
[55] Wang C, Lin Q, He B 2019 Phys. Rev. A 99 023829
Google Scholar
[56] Painter O, Vuckovic J, Scherer A 1999 J. Opt. Soc. Am. B 16 275
Google Scholar
[57] Eichenfield M, Camacho R, Chan J, Vahala K J, Painter O 2009 Nature 459 550
Google Scholar
[58] Safavi-Naeini A H, Hill J T, MeenehanS M, Chan J, Groblacher S, Painter O 2014 Phys. Rev. Lett. 112 153603
Google Scholar
[59] Burek M J, Cohen J D, Meenehan S M, El-Sawah N, Chia C, Ruelle T, Meesala S, Rochman J, Atikian H A, Markham M, Twitchen D J, Lukin M D, Painter O, Lončar M 2015 Optica 3 1404
[60] Riedinger R, Wallucks A, Marinković I, Löschnauer C, Aspelmeyer M, Hong S, Gröblacher S 2018 Nature 556 473
Google Scholar
[61] Rajasekar R, Robinson S 2019 Plasmonics 14 3
Google Scholar
[62] Regal C A, Teufel J D, Lehnert K W 2008 Nat. Phys. 4 555
Google Scholar
[63] Teufel J D, Li D, Allman M S, Cicak K, Simmonds R W 2011 Nature 471 204
Google Scholar
[64] Fink J M, Kalaee M, Pitanti A, Norte R, Heinzle L, Davanco M, Srinivasan K, Painter O 2016 Nat. Commun. 7 12396
Google Scholar
[65] Li Y C, Tang J S, Jiang J L, Pan J Z, Dai X, Wei X Y, Lu Y P, Lu S, Tu X C, Wang H B, Xia K Y, Sun G Z, Wu P H 2019 AIP Adv. 9 015029
Google Scholar
[66] Bienfait A, Satzinger K J, Zhong Y P, Chang H S, Chou M H, Conner C R, Dumur É, Grebel J, Peairs G A, Povey R G, Cleland A N 2019 Science 364 368
Google Scholar
[67] Meschede D, Walther H, Müller G 1985 Phys. Rev. Lett. 54 551
Google Scholar
[68] Haroche S 2013 Rev. Mod. Phys. 85 1083
Google Scholar
[69] Haroche S, Kleppner D 1989 Phys. Today 42 24
[70] Yurke B, Kaminsky P G, Miller R E, Whittaker E A, Smith A D, Silver A H, Simon R W 1988 Phys. Rev. Lett. 60 764
Google Scholar
[71] Martinis J M, Devoret M H, Clarke J 1985 Phys. Rev. Lett. 55 1543
Google Scholar
[72] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162
Google Scholar
[73] Ku H S, Mallet F, Vale L R, Irwin K D, Russek S E, Hilton G C, Lehnert K W 2011 IEEE T. Appl. Supercon. 21 452
Google Scholar
[74] Ku H S, Kindel W F, Mallet F, Glancy S, Irwin K D, Hilton G C, Vale L R, Lehnert K W 2015 Phys. Rev. A 91 042305
Google Scholar
[75] Li P B, Gao S Y, Li F L 2013 Phys. Rev. A 88 0438021
[76] PalomakiTA, Teufel J D, Simmonds R W, Lehnert K W 2013 Science 342 710
Google Scholar
[77] Sete E A, Eleuch H 2014 Phys. Rev. A 89 013841
Google Scholar
[78] Ockeloen-Korppi C F, Damskagg E, Pirkkalainen J M, Heikkilä T T, Massel F, Sillanpää M A 2017 Phys. Rev. Lett. 118 103601
Google Scholar
[79] Barzanjeh S, Guha S, Weedbrook C, Vitali D, Shapiro J. H, Pirandola S 2015 Phys. Rev. Lett. 114 080503
Google Scholar
[80] Aggarwal N, Debnath K, Mahajan S 2014 Int. J. Quantum Inf. 12 14500241
[81] Pan G X, Xiao R J, Zhou L 2016 Int. J. Theor. Phys. 55 329
Google Scholar
[82] Tian L 2015 Ann. Phys.-Berlin 527 1
Google Scholar
[83] TianL 2013 Phys. Rev. Lett. 110 233602
Google Scholar
[84] Andrews R W, Regal C A 2014 Nat. Phys. 114 080503
[85] Abdi M, Tombesi P, Vitali D 2015 Ann. Phys.-Berlin 527 139
Google Scholar
[86] Huang S M 2015 Phys. Rev. A 92 043845
Google Scholar
[87] Xiong B, Li X, Wang X Y, Zhou L 2017 Ann. Phys.-New York 385 757
Google Scholar
[88] Higginbotham A P, Burns P S, Urmey M D, Peterson R W, Kampel N S, Brubaker B M, Smith G, Lehnert K W, Regal C A 2018 Nat. Phys. 14 1038
Google Scholar
[89] Ma P C, Yan L L, Chen G B, Li X W, Liu S J, Zhan Y B 2018 Laser Phys. Lett. 15 035201
Google Scholar
[90] Zhong C C, Wang Z X, Zou C L, Zhang M Z, Han X, Fu W, Xu M R, Shankar S, Devoret M H, Tang H X, Jiang L 2019 arXiv: 1901.08228 v1[quant-ph]
[91] Wang Y D, Clerk A A 2012 Phys. Rev. Lett. 108 153603
Google Scholar
[92] Li B, Li P B, Zhou Y, Ma S L, Li F L 2017 Phys. Rev. A 96 032342
Google Scholar
[93] LaHaye M D 2004 Science 304 74
Google Scholar
[94] 陈雪, 刘晓威, 张可烨, 袁春华, 张卫平 2015 64 164211
Google Scholar
Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211
Google Scholar
[95] Han Y, Cheng J, Zhou L 2012 J. Mod. Optic. 59 1336
Google Scholar
[96] Qi T, Han Y, Zhou L 2013 J. Mod. Optic. 60 431
Google Scholar
[97] Akram M J, Ghafoor F, Saif F 2014 J. Phys. B-At. Mol. Opt. 48 65502
[98] Tsang M 2010 Phys. Rev. A 81 063837
Google Scholar
[99] Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W, Simmonds R W 2011 Nature 475 359
Google Scholar
[100] Threepak T, Luangvilay X, Mitatha S, Yupapin P P 2010 Microw. Opt. Techn. Lett. 52 1353
Google Scholar
计量
- 文章访问数: 13869
- PDF下载量: 353
- 被引次数: 0