搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米线减反层的解析设计法

朱兆平 秦亦强

引用本文:
Citation:

纳米线减反层的解析设计法

朱兆平, 秦亦强

Nanowires array designed by means of two-dimension closed-form solution for antireflection

Zhu Zhao-Ping, Qin Yi-Qiang
PDF
导出引用
  • 本文通过分析比较给出了常用二维等效介质理论解析解的适用条件并 且将有效介质理论的适用范围推广至零级衍射边界处, 并通过FDTD模拟验证了该解析方法的准确性. 这不仅解决了长期以来没有精确二维有效介质理论(2D-EMT)解析解的困境, 而且使得直接用解析公式设计和定量解释减反微结构的减反效果变得可能, 有着广泛的应用前景.
    By investigating the difference between the analytic solutions obtained from commonly used two-dimensional effective medium theory and the numerical solutions, we found that any analytical solution was quite accurate only at its right normalized cycle, determined by its own effective range. Thus, one should solve the problem that there was no closed-form solution for the effective permittivity of a two-dimensional zero-order grating, and expand the applied scope of the effective medium theory to the boundary of zero-order diffraction. Secondly, by using the two-dimensional analytical solution, we have designed a nanowires anti-reflection layer in silicon, which fully meet the needs of the design that reach zero reflectance at 650 nm; and the spectrum averaged reflection from 310-1120 nm is 8%, lower than silicon nitride anti-reflection layer 9.9%. Stavenga formula can be used to design a large normalized period antireflective microstructure, while the Maxwell-Garnett formula can be used to design a small normalized cycle antireflective microstructure. Design of antireflection structure by two-dimensional closed form solution directly is viable, which have huge potential application value.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2010CB6307030)和国家自然科学基金(批准号: 11074118, 11274164)资助的课题.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2010CB6307030), and the National Natural Science Foundation of China (Grant Nos. 11074118, 11274164).
    [1]

    Kelzenberg M D, Boettcher S W, Petykiewicz J A, Turner-Evans D B, Putnam M C, Warren E L, Spurgeon J M, Briggs R M, Lewis N S, Atwater H A 2010 Nat. Mater. 9 239

    [2]

    Polman A, Atwater H A 2012 Nat. Mater. 11 174

    [3]

    Kuo M L, Poxson D J, Kim Y S, Mont F W, Kim J K, Schubert E F, Lin S Y 2008 Opt. Lett. 11 174

    [4]

    Prevo B G, Hon E W, Velev O D 2007 J. Mater. Chem. 17 791

    [5]

    Her T H, Finlay R J, Wu C, Deliwala S, Mazur E 1998 Appl. Phys. Lett. 73 1673

    [6]

    Strehlke S, Bastide S, Guillet J, Le’vy-Cle’ment C 2000 Mater. Sci. Eng. B 69 81

    [7]

    Xi J Q, Schubert M F, Kim J K, Schubert E F, Chen M, Lin S Y, Liu W, Smart J A 2007 Nat. Photonics 1 176

    [8]

    Grann E B, Moharam M G, Pommet D A 1994 J. Opt. Soc. Am. A 11 2695

    [9]

    Green M A, Pillai S 2012 Nat. Photonics 6 130

    [10]

    Spinelli P, Verschuuren M A, Polman A 2012 Nat. Comms. 3:692 1

    [11]

    Raguin D H, Morris G M 1993 Appl. Opt. 32 1154

    [12]

    Raguin D H, Morris G M 1993 Appl. Opt. 32 2582

    [13]

    Scheller M, Wietzke S, Jansen C, Koch M 2009 J. Phys. D: Appl. Phys. 42 065415

    [14]

    Sancho-Parramon J, Janicki V 2008 J. Phys. D: Appl. Phys. 41 215304

    [15]

    Chen S H, Wang H W, Chang T W 2012 Opt. Express 20 A197

    [16]

    Aspnes D E 2011 Thin Solid Films 519 2571

    [17]

    Grann E B, Moharam M G, Pommet D A 1995 J. Opt. Soc. Am. A 12 333

    [18]

    Sun C H, Jiang P, Jiang B 2008 Appl. Phys. Lett. 92 061112

    [19]

    Huang Y F, Chattopadhyay S, Jen Y J, Peng C Y, Liu T, Hsu Y K, Pan C L, Lo H C, Hsu C H, Chang Y H, Lee C S, Chen K H, Chen L C 2007 Nat. Nanotech. 2 770

    [20]

    Stavenga D G, Foletti S, Palasantzas G, Arikawa K 2006 Proc. R. Soc. B 273 661

    [21]

    Pei T H, Thiyagu S, Pei Z 2011 Appl. Phys. Lett. 99 153108

    [22]

    Zhu J, Yu Z F, Burkhard G F, Hsu C M, Connor S T, Xu Y Q, Wang Q, McGehee M, Fan S H, Cui Y 2009 Nano Lett. 9 279

    [23]

    Motamedi M E, Southwell W H, Gunning W J 1992 Appl. Opt. 31 4371

    [24]

    Hu L, Chen L 2007 Nano Lett. 7 3250

    [25]

    Xiong Z Q, Zhao F Y, Yang J, Hu X H 2010 Appl. Phys. Lett. 96 181903

    [26]

    Heine C, Morf R H 1995 Appl. Opt. 34 2476

    [27]

    Kikuta H, Toyota H, Yu W J 2003 Opt. Rev. 10 63

    [28]

    Gaylord T K, Baird W E, Moharam M G 1986 Appl. Opt. 25 4562

    [29]

    Diedenhofen S L, Janssen O T A, Grzela G, Bakkers E P A M, Rivas J G 2011 Acs Nano 5 2316

    [30]

    Southwell W H 1991 J. Opt. Soc. Am. A 8 549

    [31]

    Merrilll W M, Diaz R E, LoRe M M, Squires M C, Alexopoulos N G 1999 IEEE Trans. Antennas Propag. 47 142

    [32]

    Chen F T, Craighead H G 1995 Opt. Lett. 20 121

    [33]

    Pe’ rez R 2009 J. Appl. Polym. Sci. 113 2264

    [34]

    Zhou J, Sun Y T, Sun T T, Liu X, Song W J 2011 Acta Phys. Sin. 60 088802 (in Chinese) [周骏, 孙永堂, 孙铁囤, 刘晓, 宋伟杰 2011 60 088802]

  • [1]

    Kelzenberg M D, Boettcher S W, Petykiewicz J A, Turner-Evans D B, Putnam M C, Warren E L, Spurgeon J M, Briggs R M, Lewis N S, Atwater H A 2010 Nat. Mater. 9 239

    [2]

    Polman A, Atwater H A 2012 Nat. Mater. 11 174

    [3]

    Kuo M L, Poxson D J, Kim Y S, Mont F W, Kim J K, Schubert E F, Lin S Y 2008 Opt. Lett. 11 174

    [4]

    Prevo B G, Hon E W, Velev O D 2007 J. Mater. Chem. 17 791

    [5]

    Her T H, Finlay R J, Wu C, Deliwala S, Mazur E 1998 Appl. Phys. Lett. 73 1673

    [6]

    Strehlke S, Bastide S, Guillet J, Le’vy-Cle’ment C 2000 Mater. Sci. Eng. B 69 81

    [7]

    Xi J Q, Schubert M F, Kim J K, Schubert E F, Chen M, Lin S Y, Liu W, Smart J A 2007 Nat. Photonics 1 176

    [8]

    Grann E B, Moharam M G, Pommet D A 1994 J. Opt. Soc. Am. A 11 2695

    [9]

    Green M A, Pillai S 2012 Nat. Photonics 6 130

    [10]

    Spinelli P, Verschuuren M A, Polman A 2012 Nat. Comms. 3:692 1

    [11]

    Raguin D H, Morris G M 1993 Appl. Opt. 32 1154

    [12]

    Raguin D H, Morris G M 1993 Appl. Opt. 32 2582

    [13]

    Scheller M, Wietzke S, Jansen C, Koch M 2009 J. Phys. D: Appl. Phys. 42 065415

    [14]

    Sancho-Parramon J, Janicki V 2008 J. Phys. D: Appl. Phys. 41 215304

    [15]

    Chen S H, Wang H W, Chang T W 2012 Opt. Express 20 A197

    [16]

    Aspnes D E 2011 Thin Solid Films 519 2571

    [17]

    Grann E B, Moharam M G, Pommet D A 1995 J. Opt. Soc. Am. A 12 333

    [18]

    Sun C H, Jiang P, Jiang B 2008 Appl. Phys. Lett. 92 061112

    [19]

    Huang Y F, Chattopadhyay S, Jen Y J, Peng C Y, Liu T, Hsu Y K, Pan C L, Lo H C, Hsu C H, Chang Y H, Lee C S, Chen K H, Chen L C 2007 Nat. Nanotech. 2 770

    [20]

    Stavenga D G, Foletti S, Palasantzas G, Arikawa K 2006 Proc. R. Soc. B 273 661

    [21]

    Pei T H, Thiyagu S, Pei Z 2011 Appl. Phys. Lett. 99 153108

    [22]

    Zhu J, Yu Z F, Burkhard G F, Hsu C M, Connor S T, Xu Y Q, Wang Q, McGehee M, Fan S H, Cui Y 2009 Nano Lett. 9 279

    [23]

    Motamedi M E, Southwell W H, Gunning W J 1992 Appl. Opt. 31 4371

    [24]

    Hu L, Chen L 2007 Nano Lett. 7 3250

    [25]

    Xiong Z Q, Zhao F Y, Yang J, Hu X H 2010 Appl. Phys. Lett. 96 181903

    [26]

    Heine C, Morf R H 1995 Appl. Opt. 34 2476

    [27]

    Kikuta H, Toyota H, Yu W J 2003 Opt. Rev. 10 63

    [28]

    Gaylord T K, Baird W E, Moharam M G 1986 Appl. Opt. 25 4562

    [29]

    Diedenhofen S L, Janssen O T A, Grzela G, Bakkers E P A M, Rivas J G 2011 Acs Nano 5 2316

    [30]

    Southwell W H 1991 J. Opt. Soc. Am. A 8 549

    [31]

    Merrilll W M, Diaz R E, LoRe M M, Squires M C, Alexopoulos N G 1999 IEEE Trans. Antennas Propag. 47 142

    [32]

    Chen F T, Craighead H G 1995 Opt. Lett. 20 121

    [33]

    Pe’ rez R 2009 J. Appl. Polym. Sci. 113 2264

    [34]

    Zhou J, Sun Y T, Sun T T, Liu X, Song W J 2011 Acta Phys. Sin. 60 088802 (in Chinese) [周骏, 孙永堂, 孙铁囤, 刘晓, 宋伟杰 2011 60 088802]

  • [1] 兰伟霞, 顾嘉陆, 高晓辉, 廖英杰, 钟宋义, 张卫东, 彭艳, 孙钰, 魏斌. 基于光子晶体的有机太阳能电池研究进展.  , 2021, 70(12): 128804. doi: 10.7498/aps.70.20201805
    [2] 邵春瑞, 李海洋, 王军, 夏国栋. 多孔结构体材料热整流效应.  , 2021, 70(23): 236501. doi: 10.7498/aps.70.20211285
    [3] 敬婧, 李致朋, 卢伟胜, 王宏宇, 杨祖安, 杨毅, 尹祺圣, 杨馥菱, 沈晓明, 曾建民, 詹锋. 一种具有减反射性能的Cu2ZnSnS4太阳能电池透明导电氧化物薄膜.  , 2020, 69(23): 237801. doi: 10.7498/aps.69.20200897
    [4] 宋彤彤, 罗杰, 赖耘. 赝局域有效介质理论.  , 2020, 69(15): 154203. doi: 10.7498/aps.69.20200196
    [5] 孙楠楠, 施展, 丁琪, 许伟伟, 沈洋, 南策文. 基于有效介质理论的物理性能计算模型的软件实现.  , 2019, 68(15): 157701. doi: 10.7498/aps.68.20182273
    [6] 周志刚, 宗谨, 王文广, 厚美瑛. 颗粒样品形变对声波传播影响的实验探究.  , 2017, 66(15): 154502. doi: 10.7498/aps.66.154502
    [7] 袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展.  , 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [8] 秦飞飞, 张海明, 王彩霞, 郭聪, 张晶晶. 基于阳极氧化铝纳米光栅的薄膜硅太阳能电池双重陷光结构设计与仿真.  , 2014, 63(19): 198802. doi: 10.7498/aps.63.198802
    [9] 李国龙, 何力军, 李进, 李学生, 梁森, 高忙忙, 袁海雯. 纳米银增强聚合物太阳能电池光吸收的研究.  , 2013, 62(19): 197202. doi: 10.7498/aps.62.197202
    [10] 李小娟, 韦尚江, 吕文辉, 吴丹, 李亚军, 周文政. 一种新方法制备硅/聚(3, 4-乙撑二氧噻吩)核/壳纳米线阵列杂化太阳能电池.  , 2013, 62(10): 108801. doi: 10.7498/aps.62.108801
    [11] 梁磊, 徐琴芳, 忽满利, 孙浩, 向光华, 周利斌. 晶体硅太阳电池表面纳米线阵列减反射特性研究.  , 2013, 62(3): 037301. doi: 10.7498/aps.62.037301
    [12] 李国龙, 李进. 微纳光栅结构增强聚合物太阳能电池光吸收的研究.  , 2012, 61(20): 207204. doi: 10.7498/aps.61.207204
    [13] 李艳武, 刘彭义, 侯林涛, 吴冰. Rubrene作电子传输层的异质结有机太阳能电池.  , 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [14] 赵华君, 杨守良, 张东, 梁康有, 程正富, 石东平. 亚波长金属偏振分束光栅设计分析.  , 2009, 58(9): 6236-6242. doi: 10.7498/aps.58.6236
    [15] 邢宏伟, 彭应全, 杨青森, 马朝柱, 汪润生, 李训栓. 有机体异质结太阳能电池的数值分析.  , 2008, 57(11): 7374-7379. doi: 10.7498/aps.57.7374
    [16] 张轶群, 施 毅, 濮 林, 张 荣, 郑有炓. 纳米线阵列横向输运的热电特性研究.  , 2008, 57(8): 5198-5204. doi: 10.7498/aps.57.5198
    [17] 张 芸, 张波萍, 焦力实, 张海龙, 李向阳. Au/SiO2纳米多层薄膜的制备及其性质表征.  , 2006, 55(7): 3730-3735. doi: 10.7498/aps.55.3730
    [18] 史慧刚, 付军丽, 薛德胜. 非晶Fe89.7P10.3合金纳米线阵列的磁性研究.  , 2005, 54(8): 3862-3866. doi: 10.7498/aps.54.3862
    [19] 符秀丽, 王 懿, 李培刚, 陈雷明, 张海英, 涂清云, Li L. H., 唐为华. 大规模制备Ni80Fe20纳米线阵列及其磁学特性研究.  , 2005, 54(4): 1693-1696. doi: 10.7498/aps.54.1693
    [20] 刘青芳, 王建波, 彭勇, 曹兴忠, 薛德胜. 铁镍合金纳米线阵列的制备与穆斯堡尔谱研究.  , 2001, 50(10): 2008-2011. doi: 10.7498/aps.50.2008
计量
  • 文章访问数:  6339
  • PDF下载量:  486
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-26
  • 修回日期:  2013-04-12
  • 刊出日期:  2013-08-05

/

返回文章
返回
Baidu
map