-
基于共轭聚合物给体材料P3HT和富勒烯衍生物受体材料PCBM共混的体异质结结构 的聚合物太阳能电池因其空穴载流子迁移率低而限制了P3HT:PCBM功能层厚度, 从而影响了器件对入射光的吸收. 在聚合物功能层内引入金属纳米颗粒可以利用金属表面等离子体效应增强器件内电场并改善器件的光吸收. 本文基于时域有限差分法(finite difference time domain, FDTD)方法模拟得到了聚合物功能层内包含了直径为50 nm纳米银球并且球间距为50 nm的聚合物太阳能 电池器件在波长分别为400 nm和500 nm照射时的二维光电场分布以及入射角分别为15°, 45°, 60°时包覆纳米银聚合物功能层横截面内的光电场强度分布; 计算得到了银纳米颗粒尺寸分别为10 nm, 20 nm和50 nm时以及分布在空穴传输层PEDOT:PSS的纳米银器件的光吸收; 并计算了斜入射时包覆纳米银的聚合物功能层光吸收. 理论分析表明: 聚合物功能层加入纳米银球后, 因为纳米银球的表面等离子体效应使入射光在功能层内散射增强而使器件内的光电场重新分布; 直径较大的纳米银颗粒能产生大角度的光散射, 更有利于聚合物功能层对光的吸收. 这里, 基于有机银盐还原法制备了纳米银颗粒并制备了银等离子体增强的聚合物太阳能电池, 其结构为: glass/ITO (~100 nm)/PEDOT:PSS (40 nm)/P3HT:PCBM (~100 nm)(nano-Ag)/LiF (1 nm)/Al (120 nm). 该器件与平板器件的性能对比实验证实: 通过在聚合物功能层内上引入纳米银颗粒可以有 效增加器件光吸收并改善器件电学性能, 器件外量子效率在520 nm处最大增加了17.9%.The thickness of an active layer is limited by its low mobility of carriers in a polymer solar cell composed of the blend bulk-heterojunction formed by P3HT as donor material and PCBM as acceptor material, which can affect the light absorption of the polymer solar cell. Metal nanocrystals-doped polymer active layer can enhance its inner electrical field and absorb light due to the surface plasmon resonance (SPR) effect of the nanocrystals. Two-dimensional electrical field distributions in the polymer solar cells are simulated based on finite difference time domain (FDTD) approach, under the assumption that the diameter of doping nano-Ag is 50 nm, the distance between two nanocrystals is 50nm and the incident light wavelength is 400 nm or 500 nm. The electrical field distributions over the cross-section of nano-Ag are also simulated at the incident light angle of 15°, 45°, 60°, respectively. The light absorption of different devices are calculated, in which the sizes of nano-Ag take 10 nm, 20 nm and 50 nm, respectively, Particles of nano-Ag are dispersed in PEDOT:PSS layer. Moreover, the light absorption is calculated at the incident light angles of 15°, 45°, 60°, respectively. Results show that the electrical field is redistributed due to the SPR effect caused by nano-Ag in the polymer active layer. A larger size of nano-Ag leads to light scattering in a wider angle, thus results in more light absorption by the device. Here, the colloid of nano-Ag is prepared from an organic salt of Ag, and the polymer solar cell with nano-Ag is fabricated in the structure of glass /ITO (~100 nm) /PEDOT:PSS (40 nm) /P3HT:PCBM (~100 nm)/(nano-Ag) /LiF (1 nm) /Al (120 nm). Furthermore, experimental results show that the nano-Ag doped in P3HT:PCBM layer increases light absorption and improves the electrical performance of the device, which enhances the incident photon conversion efficiency (IPCE) in spectrum at 520nm by 17.9%.
[1] Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nature 4 864
[2] Park S H, Roy A, Beaupre S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K, Heeger A J 2009 Nature Photonics 3 297
[3] Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J 2007 Science 317 222
[4] Chen D, Nakahara A, Wei D, Nordlund D, Thomas P R 2011 Nano Lett. 11 561
[5] Armbruster O, Lungenschmied C, Bauer S 2011 Phys. Rev. B 84 085208
[6] Monestier F, Simon J J, Torchio P, Escoubas L, Flory F, Bailly S, Bettignies R, Stephane G, Defranoux C 2007 Sol. Energy Mater. Sol. Cells 91 405
[7] Chen M X, Nilsson D, Kugler T, Berggren M, Remonen T 2002 Appl. Phys. Lett. 81 2011
[8] Wang J Z, Gu J, Zenhausern F, Sirringhaus H 2006 Appl. Phys. Lett. 88 133502
[9] Emelie P Y, Cagin E, Siddiqui J, Cagin E, Siddiqui J, Phillips J D, Fulk C, Garland J 2007 J. Electron. Mater. 36 841
[10] Stenzel O, Stendal A, Voigtsberger K, Borczyskowski C 1995 Sol. Energy Mater. Sol. 37 337
[11] Westphalen M Kreibig U, Rostalski J LuKth H, Meissner D 2001 Sol. Energy Mater. Sol. Cells 61 97
[12] Rand B P, Peumans P, Forrest S R 2004 J. Appl. Phys. 96 7519
[13] Catchpole K R, Polman A 2008 Appl. Phys. Lett. 93 191113
[14] Kim S S, Na S I Jo J, Kim D Y, Nah Y C 2008 Appl. Phys. Lett. 93 073307
[15] Qiao L Wang D, Zuo L, Ye Y, Qian J, Chen H, He S 2011 Applied Energy 88 848
[16] Catchpole K R and Polman A 2008 Opt Express 16 21793
[17] Atwater H A and Polman A 2010 Nature Mater. 9 205
[18] Wei B, Ge D B 2010 Acta. Phys. Sin. 54 648 (in Chinese) [魏兵, 葛德彪 2010 54 648]
-
[1] Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nature 4 864
[2] Park S H, Roy A, Beaupre S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K, Heeger A J 2009 Nature Photonics 3 297
[3] Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J 2007 Science 317 222
[4] Chen D, Nakahara A, Wei D, Nordlund D, Thomas P R 2011 Nano Lett. 11 561
[5] Armbruster O, Lungenschmied C, Bauer S 2011 Phys. Rev. B 84 085208
[6] Monestier F, Simon J J, Torchio P, Escoubas L, Flory F, Bailly S, Bettignies R, Stephane G, Defranoux C 2007 Sol. Energy Mater. Sol. Cells 91 405
[7] Chen M X, Nilsson D, Kugler T, Berggren M, Remonen T 2002 Appl. Phys. Lett. 81 2011
[8] Wang J Z, Gu J, Zenhausern F, Sirringhaus H 2006 Appl. Phys. Lett. 88 133502
[9] Emelie P Y, Cagin E, Siddiqui J, Cagin E, Siddiqui J, Phillips J D, Fulk C, Garland J 2007 J. Electron. Mater. 36 841
[10] Stenzel O, Stendal A, Voigtsberger K, Borczyskowski C 1995 Sol. Energy Mater. Sol. 37 337
[11] Westphalen M Kreibig U, Rostalski J LuKth H, Meissner D 2001 Sol. Energy Mater. Sol. Cells 61 97
[12] Rand B P, Peumans P, Forrest S R 2004 J. Appl. Phys. 96 7519
[13] Catchpole K R, Polman A 2008 Appl. Phys. Lett. 93 191113
[14] Kim S S, Na S I Jo J, Kim D Y, Nah Y C 2008 Appl. Phys. Lett. 93 073307
[15] Qiao L Wang D, Zuo L, Ye Y, Qian J, Chen H, He S 2011 Applied Energy 88 848
[16] Catchpole K R and Polman A 2008 Opt Express 16 21793
[17] Atwater H A and Polman A 2010 Nature Mater. 9 205
[18] Wei B, Ge D B 2010 Acta. Phys. Sin. 54 648 (in Chinese) [魏兵, 葛德彪 2010 54 648]
计量
- 文章访问数: 6848
- PDF下载量: 815
- 被引次数: 0