搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米银增强聚合物太阳能电池光吸收的研究

李国龙 何力军 李进 李学生 梁森 高忙忙 袁海雯

引用本文:
Citation:

纳米银增强聚合物太阳能电池光吸收的研究

李国龙, 何力军, 李进, 李学生, 梁森, 高忙忙, 袁海雯

Light absorption enhancement in polymer solar cells with nano-Ag

Li Guo-Long, He Li-Jun, Li Jin, Li Xue-Sheng, Liang Sen, Gao Mang-Mang, Yuan Hai-Wen
PDF
导出引用
  • 基于共轭聚合物给体材料P3HT和富勒烯衍生物受体材料PCBM共混的体异质结结构 的聚合物太阳能电池因其空穴载流子迁移率低而限制了P3HT:PCBM功能层厚度, 从而影响了器件对入射光的吸收. 在聚合物功能层内引入金属纳米颗粒可以利用金属表面等离子体效应增强器件内电场并改善器件的光吸收. 本文基于时域有限差分法(finite difference time domain, FDTD)方法模拟得到了聚合物功能层内包含了直径为50 nm纳米银球并且球间距为50 nm的聚合物太阳能 电池器件在波长分别为400 nm和500 nm照射时的二维光电场分布以及入射角分别为15°, 45°, 60°时包覆纳米银聚合物功能层横截面内的光电场强度分布; 计算得到了银纳米颗粒尺寸分别为10 nm, 20 nm和50 nm时以及分布在空穴传输层PEDOT:PSS的纳米银器件的光吸收; 并计算了斜入射时包覆纳米银的聚合物功能层光吸收. 理论分析表明: 聚合物功能层加入纳米银球后, 因为纳米银球的表面等离子体效应使入射光在功能层内散射增强而使器件内的光电场重新分布; 直径较大的纳米银颗粒能产生大角度的光散射, 更有利于聚合物功能层对光的吸收. 这里, 基于有机银盐还原法制备了纳米银颗粒并制备了银等离子体增强的聚合物太阳能电池, 其结构为: glass/ITO (~100 nm)/PEDOT:PSS (40 nm)/P3HT:PCBM (~100 nm)(nano-Ag)/LiF (1 nm)/Al (120 nm). 该器件与平板器件的性能对比实验证实: 通过在聚合物功能层内上引入纳米银颗粒可以有 效增加器件光吸收并改善器件电学性能, 器件外量子效率在520 nm处最大增加了17.9%.
    The thickness of an active layer is limited by its low mobility of carriers in a polymer solar cell composed of the blend bulk-heterojunction formed by P3HT as donor material and PCBM as acceptor material, which can affect the light absorption of the polymer solar cell. Metal nanocrystals-doped polymer active layer can enhance its inner electrical field and absorb light due to the surface plasmon resonance (SPR) effect of the nanocrystals. Two-dimensional electrical field distributions in the polymer solar cells are simulated based on finite difference time domain (FDTD) approach, under the assumption that the diameter of doping nano-Ag is 50 nm, the distance between two nanocrystals is 50nm and the incident light wavelength is 400 nm or 500 nm. The electrical field distributions over the cross-section of nano-Ag are also simulated at the incident light angle of 15°, 45°, 60°, respectively. The light absorption of different devices are calculated, in which the sizes of nano-Ag take 10 nm, 20 nm and 50 nm, respectively, Particles of nano-Ag are dispersed in PEDOT:PSS layer. Moreover, the light absorption is calculated at the incident light angles of 15°, 45°, 60°, respectively. Results show that the electrical field is redistributed due to the SPR effect caused by nano-Ag in the polymer active layer. A larger size of nano-Ag leads to light scattering in a wider angle, thus results in more light absorption by the device. Here, the colloid of nano-Ag is prepared from an organic salt of Ag, and the polymer solar cell with nano-Ag is fabricated in the structure of glass /ITO (~100 nm) /PEDOT:PSS (40 nm) /P3HT:PCBM (~100 nm)/(nano-Ag) /LiF (1 nm) /Al (120 nm). Furthermore, experimental results show that the nano-Ag doped in P3HT:PCBM layer increases light absorption and improves the electrical performance of the device, which enhances the incident photon conversion efficiency (IPCE) in spectrum at 520nm by 17.9%.
    • 基金项目: 宁夏大学科学研究基金(批准号:ZR1236);2012年宁夏高等学校科学研究项目和宁夏科技支撑计划项目(批准号:4120089)资助的课题.
    • Funds: Project supported by the Science Foundation of Ningxia University (Grant No. ZR1236), the Science Research Fundation of Institution of Higher Education of Ningxia (2012), and the Science and Technology Program of Ningxia, China (Grant No 4120089).
    [1]

    Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nature 4 864

    [2]

    Park S H, Roy A, Beaupre S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K, Heeger A J 2009 Nature Photonics 3 297

    [3]

    Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J 2007 Science 317 222

    [4]

    Chen D, Nakahara A, Wei D, Nordlund D, Thomas P R 2011 Nano Lett. 11 561

    [5]

    Armbruster O, Lungenschmied C, Bauer S 2011 Phys. Rev. B 84 085208

    [6]

    Monestier F, Simon J J, Torchio P, Escoubas L, Flory F, Bailly S, Bettignies R, Stephane G, Defranoux C 2007 Sol. Energy Mater. Sol. Cells 91 405

    [7]

    Chen M X, Nilsson D, Kugler T, Berggren M, Remonen T 2002 Appl. Phys. Lett. 81 2011

    [8]

    Wang J Z, Gu J, Zenhausern F, Sirringhaus H 2006 Appl. Phys. Lett. 88 133502

    [9]

    Emelie P Y, Cagin E, Siddiqui J, Cagin E, Siddiqui J, Phillips J D, Fulk C, Garland J 2007 J. Electron. Mater. 36 841

    [10]

    Stenzel O, Stendal A, Voigtsberger K, Borczyskowski C 1995 Sol. Energy Mater. Sol. 37 337

    [11]

    Westphalen M Kreibig U, Rostalski J LuKth H, Meissner D 2001 Sol. Energy Mater. Sol. Cells 61 97

    [12]

    Rand B P, Peumans P, Forrest S R 2004 J. Appl. Phys. 96 7519

    [13]

    Catchpole K R, Polman A 2008 Appl. Phys. Lett. 93 191113

    [14]

    Kim S S, Na S I Jo J, Kim D Y, Nah Y C 2008 Appl. Phys. Lett. 93 073307

    [15]

    Qiao L Wang D, Zuo L, Ye Y, Qian J, Chen H, He S 2011 Applied Energy 88 848

    [16]

    Catchpole K R and Polman A 2008 Opt Express 16 21793

    [17]

    Atwater H A and Polman A 2010 Nature Mater. 9 205

    [18]

    Wei B, Ge D B 2010 Acta. Phys. Sin. 54 648 (in Chinese) [魏兵, 葛德彪 2010 54 648]

  • [1]

    Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nature 4 864

    [2]

    Park S H, Roy A, Beaupre S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K, Heeger A J 2009 Nature Photonics 3 297

    [3]

    Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J 2007 Science 317 222

    [4]

    Chen D, Nakahara A, Wei D, Nordlund D, Thomas P R 2011 Nano Lett. 11 561

    [5]

    Armbruster O, Lungenschmied C, Bauer S 2011 Phys. Rev. B 84 085208

    [6]

    Monestier F, Simon J J, Torchio P, Escoubas L, Flory F, Bailly S, Bettignies R, Stephane G, Defranoux C 2007 Sol. Energy Mater. Sol. Cells 91 405

    [7]

    Chen M X, Nilsson D, Kugler T, Berggren M, Remonen T 2002 Appl. Phys. Lett. 81 2011

    [8]

    Wang J Z, Gu J, Zenhausern F, Sirringhaus H 2006 Appl. Phys. Lett. 88 133502

    [9]

    Emelie P Y, Cagin E, Siddiqui J, Cagin E, Siddiqui J, Phillips J D, Fulk C, Garland J 2007 J. Electron. Mater. 36 841

    [10]

    Stenzel O, Stendal A, Voigtsberger K, Borczyskowski C 1995 Sol. Energy Mater. Sol. 37 337

    [11]

    Westphalen M Kreibig U, Rostalski J LuKth H, Meissner D 2001 Sol. Energy Mater. Sol. Cells 61 97

    [12]

    Rand B P, Peumans P, Forrest S R 2004 J. Appl. Phys. 96 7519

    [13]

    Catchpole K R, Polman A 2008 Appl. Phys. Lett. 93 191113

    [14]

    Kim S S, Na S I Jo J, Kim D Y, Nah Y C 2008 Appl. Phys. Lett. 93 073307

    [15]

    Qiao L Wang D, Zuo L, Ye Y, Qian J, Chen H, He S 2011 Applied Energy 88 848

    [16]

    Catchpole K R and Polman A 2008 Opt Express 16 21793

    [17]

    Atwater H A and Polman A 2010 Nature Mater. 9 205

    [18]

    Wei B, Ge D B 2010 Acta. Phys. Sin. 54 648 (in Chinese) [魏兵, 葛德彪 2010 54 648]

  • [1] 何欣波, 魏兵. 基于悬挂变量的显式无条件稳定时域有限差分亚网格算法.  , 2024, 73(8): 080202. doi: 10.7498/aps.73.20231813
    [2] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应.  , 2022, 71(2): 024201. doi: 10.7498/aps.71.20211397
    [3] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应研究.  , 2021, (): . doi: 10.7498/aps.70.20211397
    [4] 刘志方, 赵谡玲, 徐征, 杨倩倩, 赵玲, 刘志民, 陈海涛, 杨一帆, 高松, 徐叙瑢. 利用Ag2O/PEDOT:PSS复合缓冲层提高P3HT:PCBM聚合物太阳能电池器件性能的研究.  , 2014, 63(6): 068402. doi: 10.7498/aps.63.068402
    [5] 龚伟, 徐征, 赵谡玲, 刘晓东, 杨倩倩, 樊星. NPB阳极缓冲层对反型结构聚合物太阳能电池性能的影响.  , 2014, 63(7): 078801. doi: 10.7498/aps.63.078801
    [6] 蒲年年, 李海蓉, 谢龙珍. NiOx作为空穴传输层对有机太阳能电池光吸收的影响.  , 2014, 63(6): 067201. doi: 10.7498/aps.63.067201
    [7] 李娆, 朱亚彬, 狄月, 刘冬雪, 李冰, 钟韦. 有序金纳米颗粒阵列的制备及光吸收特性研究.  , 2013, 62(19): 198101. doi: 10.7498/aps.62.198101
    [8] 李国龙, 李进, 甄红宇. TiO2光学间隔层增强聚合物太阳能电池光吸收的分析.  , 2012, 61(20): 207203. doi: 10.7498/aps.61.207203
    [9] 肖正国, 曾雪松, 郭浩民, 赵志飞, 史同飞, 王玉琦. NiO透明导电薄膜的制备及在聚合物太阳能电池中的应用.  , 2012, 61(2): 026802. doi: 10.7498/aps.61.026802
    [10] 黄卓寅, 李国龙, 李衎, 甄红宇, 沈伟东, 刘向东, 刘旭. 基于透射率曲线确定聚合物太阳能电池功能层的光学常数和厚度.  , 2012, 61(4): 048801. doi: 10.7498/aps.61.048801
    [11] 邹志宇, 刘晓芳, 曾敏, 杨白, 于荣海, 姜鹤, 唐瑞鹤, 吴章奔. 电场辅助溶解法实现玻璃表面金纳米粒子的形貌控制.  , 2012, 61(10): 104208. doi: 10.7498/aps.61.104208
    [12] 李国龙, 李进. 微纳光栅结构增强聚合物太阳能电池光吸收的研究.  , 2012, 61(20): 207204. doi: 10.7498/aps.61.207204
    [13] 闫红丹, Peter Lemmens, Johannes Ahrens, Martin Bröring, Sven Burger, Winfried Daum, Gerhard Lilienkamp, Sandra Korte, Aidin Lak, Meinhard Schilling. 基于表面等离子体耦合的高密度金纳米线阵列.  , 2012, 61(23): 237105. doi: 10.7498/aps.61.237105
    [14] 钟明亮, 李山, 熊祖洪, 张中月. 十字形银纳米结构的表面等离子体光子学性质.  , 2012, 61(2): 027803. doi: 10.7498/aps.61.027803
    [15] 郝志红, 胡子阳, 张建军, 郝秋艳, 赵颖. 掺杂PEDOT ∶PSS对聚合物太阳能电池性能影响的研究.  , 2011, 60(11): 117106. doi: 10.7498/aps.60.117106
    [16] 魏兵, 董宇航, 王飞, 李存志. 基于移位算子时域有限差分的色散薄层节点修正算法.  , 2010, 59(4): 2443-2450. doi: 10.7498/aps.59.2443
    [17] 郝鹏, 吴一辉, 张平. 纳米金表面修饰与表面等离子体共振传感器的相互作用研究.  , 2010, 59(9): 6532-6537. doi: 10.7498/aps.59.6532
    [18] 姜彦南, 葛德彪. 层状介质时域有限差分方法斜入射平面波引入新方式.  , 2008, 57(10): 6283-6289. doi: 10.7498/aps.57.6283
    [19] 洪小刚, 徐文东, 李小刚, 赵成强, 唐晓东. 数值模拟探针诱导表面等离子体共振耦合纳米光刻.  , 2008, 57(10): 6643-6648. doi: 10.7498/aps.57.6643
    [20] 王 刚, 温激鸿, 韩小云, 赵宏刚. 二维声子晶体带隙计算中的时域有限差分方法.  , 2003, 52(8): 1943-1947. doi: 10.7498/aps.52.1943
计量
  • 文章访问数:  6848
  • PDF下载量:  815
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-22
  • 修回日期:  2013-06-27
  • 刊出日期:  2013-10-05

/

返回文章
返回
Baidu
map