Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Flexible Respiratory Sensing Technology: Clinical Validation of Pulmonary Function Monitoring in Medical Physics Applications

Yang Yingqi Li Keyi Lin Guiyang Lin Guihua Zheng Guanying Xie Baosong Cui Lina Liu Xiang Yang

Citation:

Flexible Respiratory Sensing Technology: Clinical Validation of Pulmonary Function Monitoring in Medical Physics Applications

Yang Yingqi, Li Keyi, Lin Guiyang, Lin Guihua, Zheng Guanying, Xie Baosong, Cui Lina, Liu Xiang Yang
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The rapid advancement of flexible electronics has driven innovation in wearable respiratory monitoring devices, yet challenges remain in achieving medical-grade precision for quantitative pulmonary function assessment. This study integrates water molecule-responsive flexible sensing technology, wearable devices, and a cloud-based intelligent analysis platform to develop the first medical-grade flexible respiratory sensing system (SFMS). By leveraging the synergistic effect of bionic microcavity differential pressure sensing and humidity-sensitive interfaces, combined with a pressure difference-flux dynamic model, the system enables simultaneous resolution of peak expiratory flow (PEF) and forced vital capacity (FVC), accurately deriving core pulmonary function indicators such as FEV1/FVC. Clinical validation across 454 cases demonstrated high consistency with gold-standard spirometry (intraclass correlation coefficient [ICC] = 0.93–0.97), with 89.7% sensitivity and 92.3% specificity in differentiating chronic obstructive pulmonary disease (COPD) from asthma. Technologically, this work pioneers medical-grade flexible sensing for quantitative pulmonary testing, eliminating dependence on specialized operators through an embedded edge computing architecture that supports real-time cloud data interaction. The system establishes disease-specific profiles through multi-parametric physiological correlation analysis. Practically, its low cost, portability, and user-friendly operation facilitate seamless integration into primary healthcare and home health management, providing technical tools for hierarchical diagnosis and treatment of chronic respiratory diseases. Aligned with WHO's Respiratory Health Action Plan, this innovation enables universal monitoring to advance early screening and long-term disease management. With significant clinical translation potential, it offers a groundbreaking solution for building a comprehensive prevention and control framework for respiratory diseases.
  • [1]

    Wu R, Ma L, Liu X Y 2022 Adv Sci 9 e2103981

    [2]

    Lu C S, Jiang Z R, Wang X, Li K Y, Lin G Y, Yang Y Q, Lin Y H, Zheng G Y, Xie B S, Liu X Y 2024 Acta Phys Sin 73 038701

    [3]

    Kim D H, Lu N, Ma R, Kim Y S, Kim R H, Wang S, Wu J, Won S M, Tao H, Islam A, Yu K J, Kim T I, Chowdhury R, Ying M, Xu L, Li M, Chung H J, Keum H, McCormick M, Liu P, Zhang Y W, Omenetto F G, Huang Y, Coleman T, Rogers J A 2011 Science 333 838

    [4]

    Wang X, Liu Z, Zhang T 2017 Small 13 1602790

    [5]

    Hammock M L, Chortos A, Tee B C, Tok J B, Bao Z 2013 Adv Mater 25 5997

    [6]

    Someya T, Bao Z, Malliaras G G 2016 Nature 540 379

    [7]

    Gao W, Emaminejad S, Nyein H Y Y, Challa S, Chen K, Peck A, Fahad H M, Ota H, Shiraki H, Kiriya D, Lien D H, Brooks G A, Davis R W, Javey A 2016 Nature 529 509

    [8]

    Lee H, Choi T K, Lee Y B, Cho H R, Ghaffari R, Wang L, Choi H J, Chung T D, Lu N, Hyeon T, Choi S H, Kim D H 2016 Nat Nanotechnol 11 566

    [9]

    Ray T R, Choi J, Bandodkar A J, Krishnan S, Gutruf P, Tian L, Ghaffari R, Rogers J A 2019 Chem Rev 119 5461

    [10]

    Yang Y, Gao W 2019 Chem Soc Rev 48 1465

    [11]

    Wang T, Li Z, Zhang Q, Chen L, Li M 2022 Sensor Actuat A-Phys 335 113010

    [12]

    Zhao Y, Zhang Y, Wang Y, Zhang Q, Liu Z 2022 Adv Sci 9 e2102873

    [13]

    Safiri S, Carson-Chahhoud K, Noori M, Nejadghaderi S A, Sullman M J M, Ahmadian Heris J, Ansarin K, Mansournia M A, Collins G S, Kolahi A A, Kaufman J S 2022 BMJ 378 e069679

    [14]

    GBD 2019 Chronic Respiratory Diseases Collaborators 2023 eClinicalMedicine 59 100975

    [15]

    Wang C, Xu J, Yang L, Xu Y, Zhang X, Bai C, Kang J, Ran P, Shen H, Wen F, Huang K, Yao W, Sun T, Shan G, Yang T, Lin Y, Wu S, Zhu J, Wang R, Shi Z, Zhao J, Ye X, Song Y, Wang Q, Zhou Y, Ding L, Yang T, Chen Y, Guo Y, Xiao F, Lu Y, Peng X, Zhang B, Xiao D, Chen C S, Wang Z, Zhang H, Bu X, Zhang X, An L, Zhang S, Cao Z, Zhan Q, Yang Y, Cao B, Dai H, Liang L, He J 2018 Lancet 391 1706

    [16]

    Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2023 Global Strategy for the Diagnosis Management and Prevention of Chronic Obstructive Pulmonary Disease (2023 Report) Available at https://goldcopd.org

    [17]

    Pellegrino R, Viegi G, Brusasco V, Crapo R O, Burgos F, Casaburi R, Coates A, van der Grinten C P, Gustafsson P, Hankinson J, Jensen R, Johnson D C, MacIntyre N, McKay R, Miller M R, Navajas D, Pedersen O F, Wanger J 2005 Eur Respir J 26 948

    [18]

    Miller M R, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten C P, Gustafsson P, Jensen R, Johnson D C, MacIntyre N, McKay R, Navajas D, Pedersen O F, Pellegrino R, Viegi G, Wanger J, ATS/ERS Task Force 2005 Eur Respir J 26 319

    [19]

    Celli B R, MacNee W, ATS/ERS Task Force 2004 Eur Respir J 23 932

    [20]

    Vestbo J, Hurd S S, Agustí A G, Jones P W, Vogelmeier C, Anzueto A, Barnes P J, Fabbri L M, Martinez F J, Nishimura M, Stockley R A, Sin D D, Rodriguez-Roisin R 2013 Am J Respir Crit Care Med 187 347

    [21]

    Li H, Zhao X, Wang Y, Lou X, Chen S, Deng H, Shi L, Xie J, Tang D, Zhao J, Bouchard L S, Xia L, Zhou X 2021 Sci Adv 7 eabc8180

    [22]

    Li H, Li H, Zhang M, Huang C, Zhou X 2024 5 100720

    [23]

    Rao Q, Li H, Zhou Q, Zhang M, Zhao X, Shi L, Xie J, Fan L, Han Y, Guo F, Liu S, Zhou X 2024 Eur Radiol 34 7450

    [24]

    Quanjer P H, Stanojevic S, Cole T J, Baur X, Hall G L, Culver B H, Enright P L, Hankinson J L, Ip M S, Zheng J, Stocks J 2012 Eur Respir J 40 1324

    [25]

    Levy M L, Quanjer P H, Booker R, Cooper B G, Holmes S, Small I 2009 Prim Care Respir J 18 130

    [26]

    Eaton T, Withy S, Garrett J E, Mercer J, Whitlock R M L, Rea H H 1999 Chest 116 416

    [27]

    Enright P L, Crapo R O 2000 Clin Chest Med 21 645

    [28]

    Johnston K, Grimmer-Somers K, Young M 2010 BMC Res Notes 3 321

    [29]

    Wanger J, Clausen J L, Coates A, Pedersen O F, Brusasco V, Burgos F, Casaburi R, Crapo R, Enright P, van der Grinten C P, Gustafsson P, Hankinson J, Jensen R, Johnson D, Macintyre N, McKay R, Miller M R, Navajas D, Pellegrino R, Viegi G 2005 Eur Respir J 26 511

    [30]

    Kano S, Burton D L, Lanteri C J 1993 Med Eng Phys 15 365

    [31]

    Farré R, Montserrat J M, Navajas D 1998 Eur Respir J 12 1152

    [32]

    MacIntyre N R, Cheng K C 2002 Respir Care 47 193

    [33]

    Jin L, Liu Z K, Altintas M, Zheng Y, Liu Z C, Yao S R, Fan Y Y, Li Y 2022 ACS Sens 7 2281

    [34]

    Sanchez-Perez J A, Berkebile J A, Nevius B N, Ozmen G C, Nichols C J, Ganti V G, Mabrouk S A, Clifford G D, Kamaleswaran R, Wright D W et al 2022 Sensors 22 1130

    [35]

    Bai S, Chen J 2019 Sensor Actuat B-Chem 298 126908

    [36]

    Yao R Q, Zhou Y T, Shi H, Wan W B, Zhang Q H, Gu L, Wen Z, Lang X Y, Jiang Q 2020 Adv Mater 32 1907214

    [37]

    Lian Y, Yu H, Wang M, Yang X, Zhang H 2020 Nanoscale Res Lett 15 70

    [38]

    Zhang L, Chen X 2020 ACS Appl Mater Interfaces 12 34256

    [39]

    Lee Y K, Park S H 2022 J Biomed Opt 27 550

    [40]

    Ma L, Liu Q, Wu R, Meng Z, Patil A, Yu R, Yang Y, Zhu S, Fan X, Hou C, Li Y, Qiu W, Huang L, Wang J, Lin N, Wan Y, Hu J, Liu X Y 2020 Small 16 2070147

    [41]

    Qian Q, Wu W, Peng L, Wang Y, Tan A M Z, Liang L, Hus S M, Wang K, Choudhury T H, Redwing J M, Puretzky A A, Geohegan D B, Hennig R G, Ma X, Huang S 2022 ACS Nano 16 7428

    [42]

    Pan X, Grossiord N, Sol J A H P, Debije M G, Schenning A P H J 2021 Adv Funct Mater 31 2100465

    [43]

    Lu L, Ding W, Liu J, Yang B 2020 Nano Energy 78 105251

    [44]

    Ma L, Wu R, Patil A, Zhu S, Meng Z, Meng H, Hou C, Zhang Y, Liu Q, Yu R, Wang J, Lin N, Liu X Y 2019 Adv Funct Mater 29 1904549

    [45]

    Zhang L, Zhu Y, Nie Z, Li Z, Ye Y, Li L, Hong J, Bi Z, Zhou Y, Hu G 2023 Adv Mater 35 2209876

    [46]

    Hao F, Wang B, Wang X, Tang T, Li Y, Yang Z, Lu J 2022 Nano Energy 103 107823

    [47]

    Han B, Zheng R, Zeng H, Wang S, Sun K, Chen R, Li L, Wei W, He J 2024 Natl Cancer Cent 4 47

    [48]

    Culver B H, Graham B L, Coates A L, Wanger J, Berry C E, Clarke P K, Hallstrand T S, Hankinson J L, Kaminsky D A, MacIntyre N R, McCormack M C, Rosenfeld M, Stanojevic S, Weiner D J, ATS Committee on Proficiency Standards for Pulmonary Function Laboratories 2017 Am J Respir Crit Care Med 196 1463

    [49]

    Ruppel G L, Enright P L 2012 Respir Care 57 165

    [50]

    Graham B L, Steenbruggen I, Miller M R, Barjaktarevic I Z, Cooper B G, Hall G L, Hallstrand T S, Kaminsky D A, McCarthy K, McCormack M C, Oropez C E, Rosenfeld M, Stanojevic S, Swanney M P, Thompson B R 2019 Am J Respir Crit Care Med 200 e70

    [51]

    Mortimer K M, Fallot A, Balmes J R, Tager I B 2003 Chest 123 1899

    [52]

    Zhang S Q, Lin J, Yu C, Guo Z L, Tang C C, Huang Y 2025 Sensor Actuat B-Chem 437 137744

    [53]

    Lu C S, Wang X, Li K Y, Lin G Y, Yang Y Q, Lin Y H, Zheng G Y, Xie B S, Jiang Z. Xu Z, Liu Y, Ke S, Zhang B, Han K, Huang Y, Cui L, Liu X Y Adv. Fibers Mater to be published.

  • [1] ZHANG Hengbo, LI Yinhui, LI Weidong, GAO Fei, YIN Rongyan, LIANG Jianguo, ZHAO Peng, ZHOU Yunlei, LI Pengwei, BIAN Guibin. Piezoelectric sensing properties of PAN/MoS2 flexible composite nanofiber film. Acta Physica Sinica, doi: 10.7498/aps.74.20241676
    [2] Li Yin-Hui, Yin Rong-Yan, Liang Jian-Guo, Li Wei-Dong, Fan Kai, Zhou Yun-Lei. A flexible piezoelectric/pyroelectric dual-function sensor with high temperature resistance. Acta Physica Sinica, doi: 10.7498/aps.73.20241006
    [3] Lu Chang-Sheng, Jiang Ze-Rong, Wang Xiao, Li Ke-Yi, Lin Gui-Yang, Yang Ying-Qi, Lin Yi-Hua, Zheng Guan-Ying, Xie Bao-Song, Liu Xiang-Yang. Wearable respiratory function detection system based on dynamic humidity sensing: Principle and experimental comparison of lung function detection. Acta Physica Sinica, doi: 10.7498/aps.73.20231787
    [4] Ge Hong-Yi, Li Li, Jiang Yu-Ying, Li Guang-Ming, Wang Fei, Lü Ming, Zhang Yuan, Li Zhi. Double-opening metal ring based terahertz metamaterial absorber sensor. Acta Physica Sinica, doi: 10.7498/aps.71.20212303
    [5] Chen Le-Di, Fan Ren-Hao, Liu Yu, Tang Gong-Hui, Ma Zhong-Li, Peng Ru-Wen, Wang Mu. Broadband modulation of terahertz wave polarization states with flexible metamaterial. Acta Physica Sinica, doi: 10.7498/aps.71.20220801
    [6] Wang Xin, Wang Jun-Lin. Refractive index sensing characteristics of electromagnetic metamaterial absorber in terahertz band. Acta Physica Sinica, doi: 10.7498/aps.70.20201054
    [7] Pang Hui-Zhong, Wang Xin, Wang Jun-Lin, Wang Zong-Li, Liu Su-Yalatu, Tian Hu-Qiang. Sensing characteristics of dual band terahertz metamaterial absorber sensor. Acta Physica Sinica, doi: 10.7498/aps.70.20210062
    [8] Wang Chuang, Bao Rong-Rong, Pan Cao-Feng. Research and application of flexible wearable electronics based on nanogenerator in touch sensor. Acta Physica Sinica, doi: 10.7498/aps.70.20202157
    [9] Li Feng-Chao, Kong Zhen, Wu Jin-Hua, Ji Xin-Yi, Liang Jia-Jie. Advances in flexible piezoresistive pressure sensor. Acta Physica Sinica, doi: 10.7498/aps.70.20210023
    [10] Wang Da-Yong, Li Bing, Rong Lu, Zhao Jie, Wang Yun-Xin, Zhai Chang-Chao. Continuous-wave terahertz quantitative dual-plane ptychography. Acta Physica Sinica, doi: 10.7498/aps.69.20191310
    [11] Li Chuang, Li Wei-Wei, Cai Li, Xie Dan, Liu Bao-Jun, Xiang Lan, Yang Xiao-Kuo, Dong Dan-Na, Liu Jia-Hao, Chen Ya-Bo. Flexible nitrogen dioxide gas sensor based on reduced graphene oxide sensing material using silver nanowire electrode. Acta Physica Sinica, doi: 10.7498/aps.69.20191390
    [12] Shen Mao-Liang, Zhang Yan. Flexible sensor and energy storage device based on piezoelectric nanogenerator. Acta Physica Sinica, doi: 10.7498/aps.69.20200784
    [13] Tan Pu-Chuan, Zhao Chao-Chao, Fan Yu-Bo, Li Zhou. Research progress of self-powered flexible biomedical sensors. Acta Physica Sinica, doi: 10.7498/aps.69.20201012
    [14] Hou Xing-Yu, Guo Chuan-Fei. Sensing mechanisms and applications of flexible pressure sensors. Acta Physica Sinica, doi: 10.7498/aps.69.20200987
    [15] Zhang Yu-Ping, Li Tong-Tong, Lü Huan-Huan, Huang Xiao-Yan, Zhang Hui-Yun. Study on sensing characteristics of I-shaped terahertz metamaterial absorber. Acta Physica Sinica, doi: 10.7498/aps.64.117801
    [16] Ouyang Bo, Jin Xin-Yu, Xia Yong-Xiang, Jiang Lu-Rong, Wu Duan-Po. Dynamic interplay between epidemics and cascades:Epidemic outbreaks in uncorrelated networks. Acta Physica Sinica, doi: 10.7498/aps.63.218902
    [17] Huang Bin, Zhao Xiang-Yu, Qi Kai, Tang Ming, Do Younghae. Coloring the complex networks and its application for immunization strategy. Acta Physica Sinica, doi: 10.7498/aps.62.218902
    [18] Zhang Hai-Yan, Cao Ya-Ping, Yu Jian-Bo, Chen Xian-Hua. Actuating frequency selection of single mode Lamb waves using single piezoelectric transducer. Acta Physica Sinica, doi: 10.7498/aps.60.114301
    [19] Wen Luo-Sheng, Yang Xiao-Fan, Zhong Jiang. Two-sex epidemic spreading on bipartite scale-free networks. Acta Physica Sinica, doi: 10.7498/aps.57.4794
    [20] Yu A-Long. Research on the amplitude frequency characteristics compensation based on wavelet neural network for vibration velocity transducer. Acta Physica Sinica, doi: 10.7498/aps.56.3166
Metrics
  • Abstract views:  102
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Available Online:  27 May 2025

/

返回文章
返回
Baidu
map