搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压电纳米发电机的柔性传感与能量存储器件

申茂良 张岩

引用本文:
Citation:

基于压电纳米发电机的柔性传感与能量存储器件

申茂良, 张岩

Flexible sensor and energy storage device based on piezoelectric nanogenerator

Shen Mao-Liang, Zhang Yan
PDF
HTML
导出引用
  • 柔性电子与柔性传感器件未来将广泛应用在物联网、可穿戴、可植入系统中, 例如人体健康监控、触觉感知人造感官以及智能机器人电子皮肤等. 柔性压电纳米发电机的能量转换特性, 使其不仅可以作为供能器件, 而且可以作为传感器件提供传感信号, 可以解决柔性电子与自驱动技术中存在供能与性能的限制. 纳米发电机利用调控界面与表面的极化电场可以获得高性能传感与能量存储, 提供自驱动特性, 同时具有与目前电子技术相媲美的高性能. 本文综述了柔性压电纳米发电机在柔性传感与能量存储领域的最新研究进展.
    Low-cost, easy-to-deploy and self-driven flexible electronic devices and flexible sensors will bring new opportunities for developing the internet of things, wearable, and implantable technologies, especially human health monitoring, tactile perception and intelligent robot electronic skin. Therefore, it is necessary to provide high-performance and continuous energy supply modules for flexible electronic devices and flexible sensors. Nanogenerator can achieve high-performance sensing and energy storage characteristics by regulating the polarization electric field at the interface and surface, which is indeed an ideal adaptation choice. In particular, flexible piezoelectric nanogenerator can convert mechanical energy into electrical energy by piezoelectric properties, and can be applied to various deformation conditions such as bending, stretching and compression, which provides a novel solution to the problems of limited energy supply and insufficient performance in flexible electronic and self-driven technology. The piezoelectric output response of piezoelectric nanogenerator can be used not only as an energy signal to self-drive flexible electronic devices, but also as a sensing signal that can be integrated into the self-driven flexible sensors such as gas sensor, pressure sensor and biological sensor. Predictably, self-powered gas sensor with energy harvesting and high-sensitivity sensing, and self-charging power cell with energy harvesting and efficient storage will become hot topics. In this paper, we review the recent developments of flexible piezoelectric nanogenerators in flexible sensors and energy storage devices.
      通信作者: 张岩, zhangyan@uestc.edu.cn
      Corresponding author: Zhang Yan, zhangyan@uestc.edu.cn
    [1]

    Miraz M H, Ali M, Excell P S, Picking R 2015 Internet Technologies and Application (ITA) Wrexham, UK, September 8–11, 2015 p219

    [2]

    Ahmed A, Hassan I, El Kady M F, Radhi A, Jeong C K, Selvaganapathy P R, Zu J, Ren S Q, Wang Q, Kaner R B 2019 Adv. Sci. (Weinh) 6 1802230Google Scholar

    [3]

    Hinchet R, Seung W, Kim S W 2015 ChemSusChem 8 2327Google Scholar

    [4]

    Niu S M, Wang X F, Yi F, Zhou Y S, Wang Z L 2015 Nat. Commun. 6 8975Google Scholar

    [5]

    Wang Z L, Jiang T, Xu L 2017 Nano Energy 39 9Google Scholar

    [6]

    Nathan A, Ahnood A, Cole M T, Sungsik L, Suzuki Y, Hiralal P, Bonaccorso F, Hasan T, Garcia Gancedo L, Dyadyusha A, Haque S, Andrew P, Hofmann S, Moultrie J, Daping C, Flewitt A J, Ferrari A C, Kelly M J, Robertson J, Amaratunga G A J, Milne W I 2012 Proc. IEEE 100 1486Google Scholar

    [7]

    Stoppa M, Chiolerio A 2014 Sensors 14 11957Google Scholar

    [8]

    Gao H P, Asheghali D, Yadavalli N S, Pham M T, Nguyen T D, Minko S, Sharma S 2019 J. Text. Inst. 111 906Google Scholar

    [9]

    Xue X Y, Wang S H, Guo W X, Zhang Y, Wang Z L 2012 Nano Lett. 12 5048Google Scholar

    [10]

    Yang Y, Pan H, Xie G Z, Jiang Y D, Chen C X, Su Y J, Wang Y, Tai H L 2020 Sens. Actuators, A 301 111789Google Scholar

    [11]

    Xue X Y, Qu Z, Fu Y M, Yu B W, Xing L L, Zhang Y 2016 Nano Energy 26 148Google Scholar

    [12]

    Hu Y F, Wang Z L 2015 Nano Energy 14 3Google Scholar

    [13]

    Jung Y H, Hong S K, Wang H S, Han J H, Pham T X, Park H, Kim J, Kang S, Yoo C D, Lee K J 2019 Adv. Mater. e1904020Google Scholar

    [14]

    Al Ahmadi N A 2020 Mater. Res. Express 7 032001Google Scholar

    [15]

    Mahajan S, Jagtap S 2020 Appl. Mater. Today 18 100483Google Scholar

    [16]

    Fine G F, Cavanagh L M, Afonja A, Binions R 2010 Sensors (Basel) 10 5469Google Scholar

    [17]

    Wang S R, Zhao Y Q, Huang J, Wang Y, Ren H X, Wu S H, Zhang S M, Huang W P 2007 Appl. Surf. Sci. 253 3057Google Scholar

    [18]

    Verma M K, Gupta V 2012 Sens. Actuators, B 166–167 378Google Scholar

    [19]

    Shao F, Hoffmann M W G, Prades J D, Zamani R, Arbiol J, Morante J R, Varechkina E, Rumyantseva M, Gaskov A, Giebelhaus I, Fischer T, Mathur S, Hernández Ramírez F 2013 Sens. Actuators, B 181 130Google Scholar

    [20]

    Kim J H, Mirzaei A, Bang J H, Kim H W, Kim S S 2019 Sens. Actuators, B 300 126981Google Scholar

    [21]

    Bagherzadeh Nobari S, Hosseini Istadeh K, Kalantarinejad R, Elahi S M, Shokri A A 2018 Int. Nano Lett. 8 9Google Scholar

    [22]

    Xue X Y, Nie Y X, He B, Xing L L, Zhang Y, Wang Z L 2013 Nanotechnol. 24 225501Google Scholar

    [23]

    Qu Z, Fu Y M, Yu B W, Deng P, Xing L L, Xue X Y 2016 Sens. Actuators, B 222 78Google Scholar

    [24]

    Fu Y M, Nie Y X, Zhao Y Y, Wang P L, Xing L L, Zhang Y, Xue X Y 2015 ACS Appl. Mater. Interfaces 7 10482Google Scholar

    [25]

    Fu Y M, Zang W L, Wang P L, Xing L L, Xue X Y, Zhang Y 2014 Nano Energy 8 34Google Scholar

    [26]

    Nie Y X, Deng P, Zhao Y Y, Wang P L, Xing L L, Zhang Y, Xue X Y 2014 Nanotechnol. 25 265501Google Scholar

    [27]

    Wang P L, Deng P, Nie Y X, Zhao Y Y, Zhang Y, Xing L L, Xue X Y 2014 Nanotechnol. 25 075501Google Scholar

    [28]

    Xue X Y, Fu Y M, Wang Q, Xing L L, Zhang Y 2016 Adv. Funct. Mater. 26 3128Google Scholar

    [29]

    Zhang D Z, Yang Z M, Li P, Pang M S, Xue Q Z 2019 Nano Energy 65 103974Google Scholar

    [30]

    Lin Y J, Deng P, Nie Y X, Hu Y F, Xing L L, Zhang Y, Xue X Y 2014 Nanoscale 6 4604Google Scholar

    [31]

    Zhao Y Y, Lai X, Deng P, Nie Y X, Zhang Y, Xing L L, Xue X Y 2014 Nanotechnol. 25 115502Google Scholar

    [32]

    Ojha S, Paria S, Karan S K, Si S K, Maitra A, Das A K, Halder L, Bera A, De A, Khatua B B 2019 Nanoscale 11 22989Google Scholar

    [33]

    Modaresinezhad E, Darbari S 2016 Sens. Actuators, B 237 358Google Scholar

    [34]

    Aleixandre M, Gerboles M 2012 Chem. Eng. Trans. 30 169Google Scholar

    [35]

    Xu S, Hansen B J, Wang Z L 2010 Nat. Commun. 1 93Google Scholar

    [36]

    Kumar S K, Castro M, Saiter A, Delbreilh L, Feller J F, Thomas S, Grohens Y 2013 Mater. Lett. 96 109Google Scholar

    [37]

    Maity K, Mandal D 2018 ACS Appl. Mater. Interfaces 10 18257Google Scholar

    [38]

    Hosseini E S, Manjakkal L, Shakthivel D, Dahiya R 2020 ACS Appl. Mater. Interfaces 12 9008Google Scholar

    [39]

    Sinar D, Knopf G K 2020 Sens. Actuators, A 302 111800Google Scholar

    [40]

    Hu Y F, Xu C, Zhang Y, Lin L, Snyder R L, Wang Z L 2011 Adv. Mater. 23 4068Google Scholar

    [41]

    Maria Joseph Raj N P, Alluri N R, Khandelwal G, Kim S J 2019 Compos. B Eng. 161 608Google Scholar

    [42]

    Singh R K, Lye S W, Miao J M 2019 Sensors (Basel) 19 3739Google Scholar

    [43]

    Chen X L, Shao J Y, An N L, Li X M, Tian H M, Xu C, Ding Y C 2015 J. Mater. Chem. C 3 11806Google Scholar

    [44]

    Chen X L, Li X M, Shao J Y, An N L, Tian H M, Wang C, Han T Y, Wang L, Lu B H 2017 Small 13 1604245Google Scholar

    [45]

    Fu Y M, Zhang M Y, Dai Y T, Zeng H, Sun C, Han Y C, Xing L L, Wang S, Xue X Y, Zhan Y, Zhang Y 2018 Nano Energy 44 43Google Scholar

    [46]

    Han W X, He H X, Zhang L L, Dong C Y, Zeng H, Dai Y T, Xing L L, Zhang Y, Xue X Y 2017 ACS Appl. Mater. Interfaces 9 29526Google Scholar

    [47]

    Liao Z P, Liu W H, Wu Y, Zhang C, Zhang Y, Wang X L, Li X 2015 Nanoscale 7 10801Google Scholar

    [48]

    Vivekananthan V, Chandrasekhar A, Alluri N R, Purusothaman Y, Joong Kim W, Kang C N, Kim S J 2019 Mater. Lett. 249 73Google Scholar

    [49]

    Zhu J, Qian J C, Hou X J, He J, Niu X S, Geng W P, Mu J L, Zhang W D, Chou X J 2019 Smart Mater. Struct. 28 095014Google Scholar

    [50]

    Jin C R, Hao N J, Xu Z, Trase I, Nie Y, Dong L, Closson A, Chen Z, Zhang J X J 2020 Sens. Actuators, A 305 111912Google Scholar

    [51]

    Cao Y Q, Li W, Sepulveda N 2019 IEEE Sens. J. 19 10327Google Scholar

    [52]

    Jin L, Zheng Y, Liu Z K, Li J S, Zhai H, Chen Z D, Li Y 2020 ACS Appl. Mater. Interfaces 12 1359Google Scholar

    [53]

    Maity K, Garain S, Henkel K, Schmeißer D, Mandal D 2020 ACS Appl. Polym. Mater. 2 862Google Scholar

    [54]

    Chen X L, Parida K, Wang J X, Xiong J Q, Lin M F, Shao J Y, Lee P S 2017 ACS Appl. Mater. Interfaces 9 42200Google Scholar

    [55]

    Zhao T M, Fu Y M, He H X, Dong C Y, Zhang L L, Zeng H, Xing L L, Xue X Y 2018 Nanotechnol. 29 075501Google Scholar

    [56]

    Niu X S, Jia W, Qian S, Zhu J, Zhang J, Hou X J, Mu J L, Geng W P, Cho J D, He J, Chou X J 2018 ACS Sustain. Chem. Eng. 7 979Google Scholar

    [57]

    Dutta B, Kar E, Bose N, Mukherjee S 2018 ACS Sustain. Chem. Eng. 6 10505Google Scholar

    [58]

    Karan S K, Mandal D, Khatua B B 2015 Nanoscale 7 10655Google Scholar

    [59]

    Zhu M M, Lou M N, Abdalla I, Yu J Y, Li Z L, Ding B 2020 Nano Energy 69 104429Google Scholar

    [60]

    Li M, Wang Y M, Yu Z H, Fu Y, Zheng J Q, Liu Y, Cui J Q, Zhou H M, Li D Q 2020 ACS Appl. Mater. Interfaces 12 13165Google Scholar

    [61]

    Jeong C K, Hyeon D Y, Hwang G T, Lee G J, Lee M K, Park J J, Park K I 2019 J. Mater. Chem. A 7 25481Google Scholar

    [62]

    Lei Y Z, Zhao T M, He H X, Zhong T Y, Guan H Y, Xing L L, Liu B D, Xue X Y 2019 Smart Mater. Struct. 28 105001Google Scholar

    [63]

    Wang Z L, Wu W Z 2012 Angew. Chem. Int. Ed. 51 11700Google Scholar

    [64]

    Wang Z L, Song J H 2006 Science 312 242Google Scholar

    [65]

    Fan F R, Tian Z Q, Wang Z L 2012 Nano Energy 1 328Google Scholar

    [66]

    Xue X Y, Deng P, He B, Nie Y X, Xing L L, Zhang Y, Wang Z L 2014 Adv. Energy Mater. 4 1301329Google Scholar

    [67]

    Xue X Y, Deng P, Yuan S, Nie Y X, He B, Xing L L, Zhang Y 2013 Energy Environ. Sci. 6 2615Google Scholar

    [68]

    Zhang Y, Zhang Y J, Xue X Y, Cui C X, He B, Nie Y X, Deng P, Wang Z L 2014 Nanotechnol. 25 105401Google Scholar

    [69]

    Xing L L, Nie Y X, Xue X Y, Zhang Y 2014 Nano Energy 10 44Google Scholar

    [70]

    He H X, Fu Y M, Zhao T M, Gao X C, Xing L L, Zhang Y, Xue X Y 2017 Nano Energy 39 590Google Scholar

    [71]

    Xia M J, Luo C X, Su X X, Li Y H, Li P W, Hu J, Li G, Jiang H B, Zhang W D 2019 J. Mater. Sci.- Mater. Electron. 30 7558Google Scholar

    [72]

    Zhang Y Z, Wu M J, Zhu Q Y, Wang F Y, Su H X, Li H, Diao C L, Zheng H W, Wu Y H, Wang Z L 2019 Adv. Funct. Mater. 29 1904259Google Scholar

    [73]

    Zhang H, Zhang X S, Cheng X L, Liu Y, Han M D, Xue X, Wang S F, Yang F, A S S, Zhang H X, Xu Z Y 2015 Nano Energy 12 296Google Scholar

    [74]

    Lee M, Chen C Y, Wang S H, Cha S N, Park Y J, Kim J M, Chou L J, Wang Z L 2012 Adv. Mater. 24 1759Google Scholar

    [75]

    Choi M, Murillo G, Hwang S, Kim J W, Jung J H, Chen C Y, Lee M 2017 Nano Energy 33 462Google Scholar

    [76]

    Pi Z Y, Zhang J W, Wen C Y, Zhang Z B, Wu D P 2014 Nano Energy 7 33Google Scholar

    [77]

    Anton S R, Erturk A, Inman D J 2010 Smart Mater. Struct. 19 115021Google Scholar

    [78]

    You S J, Zhang L L, Gui J Z, Cui H, Guo S S 2019 Micromachines 10 302Google Scholar

    [79]

    Guo R, Zhang H L, Cao S L, Cui X J, Yan Z C, Sang S B 2019 Mater. Des. 182 108025Google Scholar

    [80]

    Gao P X, Song J H, Liu J, Wang Z L 2007 Adv. Mater. 19 67Google Scholar

    [81]

    Jana S, Garain S, Ghosh S K, Sen S, Mandal D 2016 Nanotechnol. 27 445403Google Scholar

    [82]

    Parida K, Bhavanasi V, Kumar V, Wang J X, Lee P S 2017 J. Power Sources 342 70Google Scholar

    [83]

    Zhang L L, Gui J Z, Wu Z Z, Li R, Wang Y, Gong Z Y, Zhao X Z, Sun C L, Guo S S 2019 Nano Energy 65 103924Google Scholar

    [84]

    Waseem A, Johar M A, Hassan M A, Bagal I V, Ha J S, Lee J K, Ryu S W 2020 Nanotechnol. 31 075401Google Scholar

    [85]

    Pusty M, Sinha L, Shirage P M 2019 New J. Chem. 43 284Google Scholar

    [86]

    Siddiqui S, Lee H B, Kim D I, Duy L T, Hanif A, Lee N E 2018 Adv. Energy Mater. 8 1701520Google Scholar

    [87]

    Yang L, Zhao Q Y, Chen K N, Ma Y Z, Wu Y P, Ji H L, Qiu J H 2020 ACS Appl. Mater. Interfaces 12 11045Google Scholar

    [88]

    Sarkar S, Garain S, Mandal D, Chattopadhyay K K 2014 RSC Adv. 4 48220Google Scholar

    [89]

    Zhang Y, Zhu W L, Jeong C K, Sun H J, Yang G, Chen W, Wang Q 2017 RSC Adv. 7 32502Google Scholar

    [90]

    Zhao Y L, Liao Q L, Zhang G J, Zhang Z, Liang Q J, Liao X Q, Zhang Y 2015 Nano Energy 11 719Google Scholar

    [91]

    Gilshteyn E P, Amanbaev D, Silibin M V, Sysa A, Kondrashov V A, Anisimov A S, Kallio T, Nasibulin A G 2018 Nanotechnol. 29 325501Google Scholar

    [92]

    Zhao C X, Niu J, Zhang Y Y, Li C, Hu P H 2019 Compos. B Eng. 178 107447Google Scholar

    [93]

    Peng M Z, Liu Y D, Yu A F, Zhang Y, Liu C H, Liu J Y, Wu W, Zhang K, Shi X Q, Kou J Z, Zhai J Y, Wang Z L 2016 ACS Nano 10 1572Google Scholar

    [94]

    Zhou Z, Zhang Z, Zhang Q L, Yang H, Zhu Y L, Wang Y Y, Chen L 2020 ACS Appl. Mater. Interfaces 12 1567Google Scholar

    [95]

    Kim S R, Yoo J H, Cho Y S, Park J W 2019 Mater. Res. Express 6 086311Google Scholar

    [96]

    Li J, Zhao C M, Xia K, Liu X, Li D, Han J 2019 Appl. Surf. Sci. 463 626Google Scholar

    [97]

    Lee Y, Kim S, Kim D, Lee C, Park H, Lee J H 2020 Appl. Surf. Sci. 509 145328Google Scholar

    [98]

    Naik R, T S R 2019 Mater. Res. Express 6 115330Google Scholar

    [99]

    Khalifa M, Mahendran A, Anandhan S 2019 J. Polym. Res. 26 73Google Scholar

    [100]

    Zhang Z, Chen Y, Guo J S 2019 Physica E 105 212Google Scholar

    [101]

    Khalifa M, Mahendran A, Anandhan S 2018 Polym. Compos. 40 1663Google Scholar

    [102]

    Bairagi S, Ali S W 2019 Eur. Polym. J. 116 554Google Scholar

    [103]

    Fakhri P, Amini B, Bagherzadeh R, Kashfi M, Latifi M, Yavari N, Asadi Kani S, Kong L X 2019 RSC Adv. 9 10117Google Scholar

    [104]

    Bairagi S, Ali S W 2020 Org. Electron. 78 105547Google Scholar

    [105]

    Godfrey D, Nirmal D, Arivazhagan L, Rathes Kannan R, Issac Nelson P, Rajesh S, Vidhya B, Mohankumar N 2020 Physica E 118 113931Google Scholar

    [106]

    Chen J Y, Qiu Y, Yang D C, She J, Wang Z Y 2020 J. Mater. Sci.- Mater. Electron. 31 5584Google Scholar

    [107]

    Ye S B, Cheng C, Chen X M, Chen X L, Shao J Y, Zhang J, Hu H W, Tian H M, Li X M, Ma L, Jia W B 2019 Nano Energy 60 701Google Scholar

    [108]

    Wang A C, Hu M, Zhou L W, Qiang X Y 2019 Nanomaterials (Basel) 9 349Google Scholar

    [109]

    He P, Chen W L, Li J P, Zhang H, Li Y W, Wang E B 2020 Sci. Bull. 65 35Google Scholar

    [110]

    Khadtare S, Ko E J, Kim Y H, Lee H S, Moon D K 2019 Sens. Actuators, A Phys. 299 111575Google Scholar

    [111]

    Ramadoss A, Saravanakumar B, Lee S W, Kim Y S, Kim S J, Wang Z L 2015 ACS Nano 9 4337Google Scholar

    [112]

    Mandal D, Henkel K, Schmeisser D 2014 Phys. Chem. Chem. Phys. 16 10403Google Scholar

  • 图 1  基于传感网络的IOT[1]

    Fig. 1.  Internet of things (IOT) based on sensor network[1].

    图 2  ZnO NWs-PENG基自驱动气体传感器的(a) 结构示意图和 (b) 处于不同气体环境中的压电输出响应[22]; PANI/PTFE/PANI三明治纳米结构型嗅觉电子皮肤的 (c) 结构示意图和 (d) 在不同乙醇气体浓度下的输出电压[28]

    Fig. 2.  (a) Schematic and (b) piezoelectric output response in different gas environments of ZnO NWs-PENG based self-driven gas sensor[22]; (c) schematic and (d) output voltage at different concentrations of ethanol gas of olfactory electronic skin based on PANI/ PTFE/PANI sandwich nanostructure[28].

    图 3  基于柔性PENG的自驱动H2S气体传感器[23] (a) 硫化反应的传感机制; (b) 响应过程; (c) 复原过程

    Fig. 3.  Self-driven H2S gas sensor based on flexible PENG[23]: (a) The sensing mechanism of vulcanization reaction; (b) response process; (c) recovery process.

    图 4  基于柔性PENG的自驱动压力传感器 (a) 基于OPNG的重量测量传感器能够成功区分出不同体重的实验者[37]; (b) 基于OPNG的振动传感器在不同应用场景下的输出响应[37]; (c) 基于P(VDF-TrFE) 纳米线阵列的自供电柔性压力传感器用于声波检测[43]; (d) 基于P(VDF-TrFE)/钛酸钡 (BaTiO3) 压电增强纳米复合微柱阵列的声压传感器用于监测声压变化[44]

    Fig. 4.  Self-driven pressure sensors based on flexible PENG: (a) The weight sensor based on the OPNG can distinguish the subjects with different weights[37]; (b) the output response of vibration sensor based on the OPNG in different application conditions[37]; (c) self-powered flexible pressure sensor based on P(VDF-TrFE) nanowire arrays can be used for acoustic detection[43]; (d) sound pressure sensor based on P(VDF-TrFE)/BaTiO3 piezoelectric reinforced nanocomposite microcolumn arrays can be used to monitor sound pressure changes[44].

    图 5-3  基于柔性PENG的自驱动生物传感器被用于监测(a) 手指肌肉运动状态、呼吸、心跳脉冲以及低强度声波[43], (b) 深呼吸、喘气、呼吸困难以及正常呼吸这四种不同的呼吸模式[44], (c) 眨眼、发声、手臂弯曲、桡动脉脉搏跳动/心脏跳动等人体生理活动[54]

    Fig. 5-3.  Self-driven biosensors based on flexible PENG are used to monitor (a) finger muscle movement, breathing, heartbeat pulses, and low-intensity sound waves[43], (b) four different breathing modes: deep breathing, gasping, dyspnea, and normal breathing[44], (c) human physiological activities such as blinking, vocalization, arm bending, radial artery pulse / heart beating, etc[54].

    图 6  基于柔性PENG的电子皮肤 (生物) 传感器[59] (a)—(c) 基于NiO @ SiO2/PVDF纳米复合膜的电子皮肤触觉传感器[57]; (d) 用于体液中葡萄糖水平检测的基于压电-酶反应耦合过程的自供电电子皮肤[11]

    Fig. 6.  E-skin (biological) sensors based on flexible PENG: (a)–(c) E-skin tactile sensor based on NiO@SiO2/PVDF nanocomposite film[57]; (d) self-powered E-skin based on the coupled process of piezoelectric-enzyme reaction can be used to detect glucose levels in body fluids[11].

    图 7  采用“三明治”结构的内部集成式自充电能源包 (a) 基于PVDF纳米薄膜的一体式自充电能源包[9]; (b) 基于PVDF-石墨烯纳米片的柔性自充电能源包[66]; (c) 基于CuO / PVDF纳米复合薄膜的自充电能源包[67]; (d) 基于PVDF-PZT纳米复合薄膜的自充电能源包[68]; (e) 介孔PVDF纳米薄膜作为自充电能源包的压电分离器[69]; (f) 基于介孔PVDF-LiPF6膜的全固态柔性自充电能源包[70]

    Fig. 7.  Internal integrated SCPC with "sandwich" structure: (a) An integrated SCPC based on PVDF nano-film[9]; (b) flexible SCPC based on PVDF-graphene nanosheets[66]; (c) CuO / PVDF nanocomposite film based novel SCPC[67]; (d) SCPC based on PVDF-PZT nanocomposite film[68]; (e) mesoporous PVDF nano-film can be used as piezoelectric separator of SCPC[69]; (f) all-solid-state flexible SCPC based on mesoporous PVDF-LiPF6 film[70].

    图 8  多孔PVDF纳米薄膜基自充电能源包的微观电化学过程[69] (a) 在初始阶段, 电解质中的锂离子浓度处于动态平衡; (b) 当外力F施加到SCPC上时, 压电材料产生形变, 自充电能源包内部产生电势差; (c) 压电电场驱动Li+ 和电子在电极之间进行传导, 促进电极发生氧化还原反应; (d) 自充电能源包的内部再次逐渐达到动态平衡; (e) 当释放外力F时, Li+和电子反向传导; (f) 自充电能源包的内部趋于稳定并最终达到动态平衡状态

    Fig. 8.  Microscopic electrochemical process of porous PVDF nano-film based SCPC[69]: (a) In the initial stage, the lithium ion concentration in the electrolyte is in dynamic equilibrium; (b) when the external force F is applied to SCPC, the piezoelectric material deforms and a potential difference is generated inside the SCPC; (c) the piezoelectric electric field drives Li+ and electrons to conduct between the electrodes, promoting the electrode to undergo REDOX reaction; (d) the interior of SCPC gradually reaches dynamic equilibrium again; (e) when the external force F is released, Li+ and electrons conduct in reverse; (f) the interior of SCPC tends to be stable and eventually reaches a dynamic equilibrium state.

    表 1  柔性PENG-自驱动气体传感器与非自驱动MOS气体传感器的性能比较 (1 ppm = 1 mg/L)

    Table 1.  Comparison of different flexible PENGs-based self-driven gas sensors and MOS-based non-self-driven gas sensors (1 ppm = 1 mg/L).

    组分材料选择性灵敏度响应特性工作条件检测极限检测范围
    Au/SnO2厚膜
    (非自驱动)[17]
    CO电阻比30.2 (4000 ppm, 210 ℃)响应时间8 s, 复原时间6 s (500 ppm, 210 ℃)83—210 ℃N/A100—4000 ppm
    SnO2-CuO多层结构 (非自驱动)[18]H2S电阻比2.7 × 104 (20 ppm)响应时间2 s140 ℃N/A2—20 ppm
    p型CuO颗粒/n型SnO2纳米线异质结构 (非自驱动)[19]H2S电导比3250 (2 ppm)响应时间2 min,
    复原时间10 min
    250 ℃N/A1—10 ppm
    氧化铜功能化SnO2-ZnO核壳纳米线
    (非自驱动)[20]
    H2S约75% (12.5 ppm, 5 V, 50 ℃)N/A室温 (材料的自热效应提供能量)N/AN/A
    单壁碳纳米管
    (非自驱动)[21]
    H2S71.91% (40 mV)1.53—0.89 μA能量窗口介于
    $ \pm $0.02 eV
    N/AN/A
    ZnO纳米线[22]O2; H2S;
    水蒸气
    35.7%; 28.6%; 127.3%0.7; 0.198; 0.35 V
    压电输出
    室温100 ppm (H2S)100—1000 ppm (H2S)
    NiO/ZnO异质结
    纳米线阵列[23]
    H2S536% (1000 ppm)0.388 V (0 ppm)—0.061 V (1000 ppm)室温10—30 ppm0—1000 ppm
    ZnSnO3/ZnO
    纳米线[24]
    液化石油气498.9% (8000 ppm)0.533 V (0 ppm)—0.089 V (8000 ppm)室温600 ppm1000—8000 ppm
    SnO2/ZnO纳米阵列[25]H2471.4% (800 ppm)0.80 V (0 ppm)—
    0.14 V (800 ppm)
    室温, 可由手指
    弯曲驱动
    10 ppm0—800 ppm
    CuO/ZnO PN结
    纳米阵列[26]
    H2S约629.8% (800 ppm)0.738 V (0 ppm)—
    0.101 V (800 ppm);
    响应时间250 s (200 ppm)
    室温N/A0—800 ppm
    CdS纳米棒阵列[27]H2S166.7% (600 ppm)0.32 V (0 ppm)—
    0.12 V (600 ppm)
    室温, 可由手指
    按压驱动
    N/A0—600 ppm
    PANI/PTFE/PANI三明治纳米结构[28]乙醇66.8% (210 ppm)响应时间 < 20 s,
    复原时间 < 25 s
    室温30 ppm0—210 ppm
    下载: 导出CSV

    表 2  柔性外壳基板材料汇总

    Table 2.  Summary of flexible substrate materials in SCPC.

    组分名称主要功能材料举例
    外壳基板保护支撑,
    避免泄露,
    封装缓冲
    聚酰亚胺板/PI[11,23,25,41,43,44,50,66,70,73-79]; 塑料基板[80]; PDMS基板[11,29,37,40,78,81-87];
    玻璃基板[33,50,88,89]; PET基板[29,48,61,71,72,84,90-95];
    萘二甲酸乙二酯/PEN[96,97]; 聚氯乙烯/PVC[98,99]; 尼龙织物[100]
    下载: 导出CSV

    表 3  柔性电极材料汇总

    Table 3.  Summary of flexible electrode materials in SCPC.

    组分名称主要功能材料举例
    电池电极为电极的氧化还原反应提供反应场所和反应物质Cu[32,66,70,71,73,78,80,92,98,99,101]; Al[11,23,25,33,41,66,70,73,79,85,95,97,102-105]; LiCoO2[66,70]; 石墨[57,58,70,81,86];
    石墨烯[66]; ITO[48,61,72,90,95,96,106]; Au[29,40,43,44,50,74-76,82-84,87,96,97,103,107-109]; Cr[40,74,75,107];
    Ag[49,54,94,100,107,110]; 碳纳米管[44,82,91]; Ti[11,23,25,55]; Ni[33,93]; MnO2 [111]
    下载: 导出CSV

    表 4  柔性压电核心材料汇总

    Table 4.  Summary of flexible piezoelectric materials in SCPC.

    组分名称主要功能材料举例
    压电
    分离层
    压电效应; 为离子传导提供动力等 ZnO纳米线/棒[11,40,55,80,97,100,109]; (介孔) PVDF纳米薄膜[8,37,66,70,73,79,87,110];
    PVDF-ZnO复合薄膜[50,74,75,81,103,111]; P(VDF-TrFE)复合薄膜[43,44,61,76,78,82,83,86,89,91,92,94-96,107,108];
    PVDF-BaTiO3复合薄膜[10,44,90]; PVDF-BiVO4复合薄膜[88]; PVDF-KNN复合薄膜[102,104];
    PVDF-rGO-Ag复合薄膜[85]; PVDF-ZrO2复合薄膜[98]; PVDF-NiO-SiO2复合薄膜[57];
    ZnPc纳米棒[105]; 单层MoS2薄片[29]
    下载: 导出CSV

    表 5  部分柔性SCPC的组分材料和输出性能举例

    Table 5.  Examples of component materials and output properties of flexible SCPC.

    组分材料电解质类型峰值输出电压/电流能量存储容量/μA·h稳定性主要特性
    PVDF薄膜/ LiCoO2-TiO2
    电极/ Al-Ti基板[9]
    液态LiPF6327—395 mV
    (2.3 Hz, 45 N)
    约0.036约8000周期PVDF-SCPC的雏形
    PVDF纳米薄膜/LiCoO2-
    石墨烯电极/ Al-Cu箔-
    聚酰亚胺基板[66]
    液态LiPF6500—850 mV
    (1.0 Hz, 34 N,
    弯曲角度${10^ \circ }$)
    约0.266约450 min石墨烯电极和聚酰
    亚胺基板被首次应
    用于柔性SCPC
    介孔PVDF薄膜/ LiCoO2-
    石墨电极/ Al-Cu基板[70]
    固态LiPF625—473 mV
    (1.0 Hz, 30 N)
    约0.118约160 min全固态可
    弯折SCPC
    PVDF-PZT纳米复合薄
    膜/LiCoO2-多壁碳纳米管电极/Al-Cu基板[68]
    液态LiPF6210—297.6 mV
    (1.5 Hz, 10 N)
    约0.010N/APZT具有较高
    的压电势系数
    (500—600 pC/N)
    定向P(VDF-TrFE) 纳米纤维/平行Cu电极/PI基板[78]N/A12 V, 150 nA
    (1.6 Hz, 2 kPa)
    N/AN/Aβ晶相含量
    PVDF-ZnO纳米复合薄膜/Al-Au电极/PTFE基板[103]N/A约600 mV
    (6.0 Hz, 21 N)
    N/AN/AZnO和PVDF材料的极
    化方向相同, 杂化结构
    具有协同的压电特性
    下载: 导出CSV
    Baidu
  • [1]

    Miraz M H, Ali M, Excell P S, Picking R 2015 Internet Technologies and Application (ITA) Wrexham, UK, September 8–11, 2015 p219

    [2]

    Ahmed A, Hassan I, El Kady M F, Radhi A, Jeong C K, Selvaganapathy P R, Zu J, Ren S Q, Wang Q, Kaner R B 2019 Adv. Sci. (Weinh) 6 1802230Google Scholar

    [3]

    Hinchet R, Seung W, Kim S W 2015 ChemSusChem 8 2327Google Scholar

    [4]

    Niu S M, Wang X F, Yi F, Zhou Y S, Wang Z L 2015 Nat. Commun. 6 8975Google Scholar

    [5]

    Wang Z L, Jiang T, Xu L 2017 Nano Energy 39 9Google Scholar

    [6]

    Nathan A, Ahnood A, Cole M T, Sungsik L, Suzuki Y, Hiralal P, Bonaccorso F, Hasan T, Garcia Gancedo L, Dyadyusha A, Haque S, Andrew P, Hofmann S, Moultrie J, Daping C, Flewitt A J, Ferrari A C, Kelly M J, Robertson J, Amaratunga G A J, Milne W I 2012 Proc. IEEE 100 1486Google Scholar

    [7]

    Stoppa M, Chiolerio A 2014 Sensors 14 11957Google Scholar

    [8]

    Gao H P, Asheghali D, Yadavalli N S, Pham M T, Nguyen T D, Minko S, Sharma S 2019 J. Text. Inst. 111 906Google Scholar

    [9]

    Xue X Y, Wang S H, Guo W X, Zhang Y, Wang Z L 2012 Nano Lett. 12 5048Google Scholar

    [10]

    Yang Y, Pan H, Xie G Z, Jiang Y D, Chen C X, Su Y J, Wang Y, Tai H L 2020 Sens. Actuators, A 301 111789Google Scholar

    [11]

    Xue X Y, Qu Z, Fu Y M, Yu B W, Xing L L, Zhang Y 2016 Nano Energy 26 148Google Scholar

    [12]

    Hu Y F, Wang Z L 2015 Nano Energy 14 3Google Scholar

    [13]

    Jung Y H, Hong S K, Wang H S, Han J H, Pham T X, Park H, Kim J, Kang S, Yoo C D, Lee K J 2019 Adv. Mater. e1904020Google Scholar

    [14]

    Al Ahmadi N A 2020 Mater. Res. Express 7 032001Google Scholar

    [15]

    Mahajan S, Jagtap S 2020 Appl. Mater. Today 18 100483Google Scholar

    [16]

    Fine G F, Cavanagh L M, Afonja A, Binions R 2010 Sensors (Basel) 10 5469Google Scholar

    [17]

    Wang S R, Zhao Y Q, Huang J, Wang Y, Ren H X, Wu S H, Zhang S M, Huang W P 2007 Appl. Surf. Sci. 253 3057Google Scholar

    [18]

    Verma M K, Gupta V 2012 Sens. Actuators, B 166–167 378Google Scholar

    [19]

    Shao F, Hoffmann M W G, Prades J D, Zamani R, Arbiol J, Morante J R, Varechkina E, Rumyantseva M, Gaskov A, Giebelhaus I, Fischer T, Mathur S, Hernández Ramírez F 2013 Sens. Actuators, B 181 130Google Scholar

    [20]

    Kim J H, Mirzaei A, Bang J H, Kim H W, Kim S S 2019 Sens. Actuators, B 300 126981Google Scholar

    [21]

    Bagherzadeh Nobari S, Hosseini Istadeh K, Kalantarinejad R, Elahi S M, Shokri A A 2018 Int. Nano Lett. 8 9Google Scholar

    [22]

    Xue X Y, Nie Y X, He B, Xing L L, Zhang Y, Wang Z L 2013 Nanotechnol. 24 225501Google Scholar

    [23]

    Qu Z, Fu Y M, Yu B W, Deng P, Xing L L, Xue X Y 2016 Sens. Actuators, B 222 78Google Scholar

    [24]

    Fu Y M, Nie Y X, Zhao Y Y, Wang P L, Xing L L, Zhang Y, Xue X Y 2015 ACS Appl. Mater. Interfaces 7 10482Google Scholar

    [25]

    Fu Y M, Zang W L, Wang P L, Xing L L, Xue X Y, Zhang Y 2014 Nano Energy 8 34Google Scholar

    [26]

    Nie Y X, Deng P, Zhao Y Y, Wang P L, Xing L L, Zhang Y, Xue X Y 2014 Nanotechnol. 25 265501Google Scholar

    [27]

    Wang P L, Deng P, Nie Y X, Zhao Y Y, Zhang Y, Xing L L, Xue X Y 2014 Nanotechnol. 25 075501Google Scholar

    [28]

    Xue X Y, Fu Y M, Wang Q, Xing L L, Zhang Y 2016 Adv. Funct. Mater. 26 3128Google Scholar

    [29]

    Zhang D Z, Yang Z M, Li P, Pang M S, Xue Q Z 2019 Nano Energy 65 103974Google Scholar

    [30]

    Lin Y J, Deng P, Nie Y X, Hu Y F, Xing L L, Zhang Y, Xue X Y 2014 Nanoscale 6 4604Google Scholar

    [31]

    Zhao Y Y, Lai X, Deng P, Nie Y X, Zhang Y, Xing L L, Xue X Y 2014 Nanotechnol. 25 115502Google Scholar

    [32]

    Ojha S, Paria S, Karan S K, Si S K, Maitra A, Das A K, Halder L, Bera A, De A, Khatua B B 2019 Nanoscale 11 22989Google Scholar

    [33]

    Modaresinezhad E, Darbari S 2016 Sens. Actuators, B 237 358Google Scholar

    [34]

    Aleixandre M, Gerboles M 2012 Chem. Eng. Trans. 30 169Google Scholar

    [35]

    Xu S, Hansen B J, Wang Z L 2010 Nat. Commun. 1 93Google Scholar

    [36]

    Kumar S K, Castro M, Saiter A, Delbreilh L, Feller J F, Thomas S, Grohens Y 2013 Mater. Lett. 96 109Google Scholar

    [37]

    Maity K, Mandal D 2018 ACS Appl. Mater. Interfaces 10 18257Google Scholar

    [38]

    Hosseini E S, Manjakkal L, Shakthivel D, Dahiya R 2020 ACS Appl. Mater. Interfaces 12 9008Google Scholar

    [39]

    Sinar D, Knopf G K 2020 Sens. Actuators, A 302 111800Google Scholar

    [40]

    Hu Y F, Xu C, Zhang Y, Lin L, Snyder R L, Wang Z L 2011 Adv. Mater. 23 4068Google Scholar

    [41]

    Maria Joseph Raj N P, Alluri N R, Khandelwal G, Kim S J 2019 Compos. B Eng. 161 608Google Scholar

    [42]

    Singh R K, Lye S W, Miao J M 2019 Sensors (Basel) 19 3739Google Scholar

    [43]

    Chen X L, Shao J Y, An N L, Li X M, Tian H M, Xu C, Ding Y C 2015 J. Mater. Chem. C 3 11806Google Scholar

    [44]

    Chen X L, Li X M, Shao J Y, An N L, Tian H M, Wang C, Han T Y, Wang L, Lu B H 2017 Small 13 1604245Google Scholar

    [45]

    Fu Y M, Zhang M Y, Dai Y T, Zeng H, Sun C, Han Y C, Xing L L, Wang S, Xue X Y, Zhan Y, Zhang Y 2018 Nano Energy 44 43Google Scholar

    [46]

    Han W X, He H X, Zhang L L, Dong C Y, Zeng H, Dai Y T, Xing L L, Zhang Y, Xue X Y 2017 ACS Appl. Mater. Interfaces 9 29526Google Scholar

    [47]

    Liao Z P, Liu W H, Wu Y, Zhang C, Zhang Y, Wang X L, Li X 2015 Nanoscale 7 10801Google Scholar

    [48]

    Vivekananthan V, Chandrasekhar A, Alluri N R, Purusothaman Y, Joong Kim W, Kang C N, Kim S J 2019 Mater. Lett. 249 73Google Scholar

    [49]

    Zhu J, Qian J C, Hou X J, He J, Niu X S, Geng W P, Mu J L, Zhang W D, Chou X J 2019 Smart Mater. Struct. 28 095014Google Scholar

    [50]

    Jin C R, Hao N J, Xu Z, Trase I, Nie Y, Dong L, Closson A, Chen Z, Zhang J X J 2020 Sens. Actuators, A 305 111912Google Scholar

    [51]

    Cao Y Q, Li W, Sepulveda N 2019 IEEE Sens. J. 19 10327Google Scholar

    [52]

    Jin L, Zheng Y, Liu Z K, Li J S, Zhai H, Chen Z D, Li Y 2020 ACS Appl. Mater. Interfaces 12 1359Google Scholar

    [53]

    Maity K, Garain S, Henkel K, Schmeißer D, Mandal D 2020 ACS Appl. Polym. Mater. 2 862Google Scholar

    [54]

    Chen X L, Parida K, Wang J X, Xiong J Q, Lin M F, Shao J Y, Lee P S 2017 ACS Appl. Mater. Interfaces 9 42200Google Scholar

    [55]

    Zhao T M, Fu Y M, He H X, Dong C Y, Zhang L L, Zeng H, Xing L L, Xue X Y 2018 Nanotechnol. 29 075501Google Scholar

    [56]

    Niu X S, Jia W, Qian S, Zhu J, Zhang J, Hou X J, Mu J L, Geng W P, Cho J D, He J, Chou X J 2018 ACS Sustain. Chem. Eng. 7 979Google Scholar

    [57]

    Dutta B, Kar E, Bose N, Mukherjee S 2018 ACS Sustain. Chem. Eng. 6 10505Google Scholar

    [58]

    Karan S K, Mandal D, Khatua B B 2015 Nanoscale 7 10655Google Scholar

    [59]

    Zhu M M, Lou M N, Abdalla I, Yu J Y, Li Z L, Ding B 2020 Nano Energy 69 104429Google Scholar

    [60]

    Li M, Wang Y M, Yu Z H, Fu Y, Zheng J Q, Liu Y, Cui J Q, Zhou H M, Li D Q 2020 ACS Appl. Mater. Interfaces 12 13165Google Scholar

    [61]

    Jeong C K, Hyeon D Y, Hwang G T, Lee G J, Lee M K, Park J J, Park K I 2019 J. Mater. Chem. A 7 25481Google Scholar

    [62]

    Lei Y Z, Zhao T M, He H X, Zhong T Y, Guan H Y, Xing L L, Liu B D, Xue X Y 2019 Smart Mater. Struct. 28 105001Google Scholar

    [63]

    Wang Z L, Wu W Z 2012 Angew. Chem. Int. Ed. 51 11700Google Scholar

    [64]

    Wang Z L, Song J H 2006 Science 312 242Google Scholar

    [65]

    Fan F R, Tian Z Q, Wang Z L 2012 Nano Energy 1 328Google Scholar

    [66]

    Xue X Y, Deng P, He B, Nie Y X, Xing L L, Zhang Y, Wang Z L 2014 Adv. Energy Mater. 4 1301329Google Scholar

    [67]

    Xue X Y, Deng P, Yuan S, Nie Y X, He B, Xing L L, Zhang Y 2013 Energy Environ. Sci. 6 2615Google Scholar

    [68]

    Zhang Y, Zhang Y J, Xue X Y, Cui C X, He B, Nie Y X, Deng P, Wang Z L 2014 Nanotechnol. 25 105401Google Scholar

    [69]

    Xing L L, Nie Y X, Xue X Y, Zhang Y 2014 Nano Energy 10 44Google Scholar

    [70]

    He H X, Fu Y M, Zhao T M, Gao X C, Xing L L, Zhang Y, Xue X Y 2017 Nano Energy 39 590Google Scholar

    [71]

    Xia M J, Luo C X, Su X X, Li Y H, Li P W, Hu J, Li G, Jiang H B, Zhang W D 2019 J. Mater. Sci.- Mater. Electron. 30 7558Google Scholar

    [72]

    Zhang Y Z, Wu M J, Zhu Q Y, Wang F Y, Su H X, Li H, Diao C L, Zheng H W, Wu Y H, Wang Z L 2019 Adv. Funct. Mater. 29 1904259Google Scholar

    [73]

    Zhang H, Zhang X S, Cheng X L, Liu Y, Han M D, Xue X, Wang S F, Yang F, A S S, Zhang H X, Xu Z Y 2015 Nano Energy 12 296Google Scholar

    [74]

    Lee M, Chen C Y, Wang S H, Cha S N, Park Y J, Kim J M, Chou L J, Wang Z L 2012 Adv. Mater. 24 1759Google Scholar

    [75]

    Choi M, Murillo G, Hwang S, Kim J W, Jung J H, Chen C Y, Lee M 2017 Nano Energy 33 462Google Scholar

    [76]

    Pi Z Y, Zhang J W, Wen C Y, Zhang Z B, Wu D P 2014 Nano Energy 7 33Google Scholar

    [77]

    Anton S R, Erturk A, Inman D J 2010 Smart Mater. Struct. 19 115021Google Scholar

    [78]

    You S J, Zhang L L, Gui J Z, Cui H, Guo S S 2019 Micromachines 10 302Google Scholar

    [79]

    Guo R, Zhang H L, Cao S L, Cui X J, Yan Z C, Sang S B 2019 Mater. Des. 182 108025Google Scholar

    [80]

    Gao P X, Song J H, Liu J, Wang Z L 2007 Adv. Mater. 19 67Google Scholar

    [81]

    Jana S, Garain S, Ghosh S K, Sen S, Mandal D 2016 Nanotechnol. 27 445403Google Scholar

    [82]

    Parida K, Bhavanasi V, Kumar V, Wang J X, Lee P S 2017 J. Power Sources 342 70Google Scholar

    [83]

    Zhang L L, Gui J Z, Wu Z Z, Li R, Wang Y, Gong Z Y, Zhao X Z, Sun C L, Guo S S 2019 Nano Energy 65 103924Google Scholar

    [84]

    Waseem A, Johar M A, Hassan M A, Bagal I V, Ha J S, Lee J K, Ryu S W 2020 Nanotechnol. 31 075401Google Scholar

    [85]

    Pusty M, Sinha L, Shirage P M 2019 New J. Chem. 43 284Google Scholar

    [86]

    Siddiqui S, Lee H B, Kim D I, Duy L T, Hanif A, Lee N E 2018 Adv. Energy Mater. 8 1701520Google Scholar

    [87]

    Yang L, Zhao Q Y, Chen K N, Ma Y Z, Wu Y P, Ji H L, Qiu J H 2020 ACS Appl. Mater. Interfaces 12 11045Google Scholar

    [88]

    Sarkar S, Garain S, Mandal D, Chattopadhyay K K 2014 RSC Adv. 4 48220Google Scholar

    [89]

    Zhang Y, Zhu W L, Jeong C K, Sun H J, Yang G, Chen W, Wang Q 2017 RSC Adv. 7 32502Google Scholar

    [90]

    Zhao Y L, Liao Q L, Zhang G J, Zhang Z, Liang Q J, Liao X Q, Zhang Y 2015 Nano Energy 11 719Google Scholar

    [91]

    Gilshteyn E P, Amanbaev D, Silibin M V, Sysa A, Kondrashov V A, Anisimov A S, Kallio T, Nasibulin A G 2018 Nanotechnol. 29 325501Google Scholar

    [92]

    Zhao C X, Niu J, Zhang Y Y, Li C, Hu P H 2019 Compos. B Eng. 178 107447Google Scholar

    [93]

    Peng M Z, Liu Y D, Yu A F, Zhang Y, Liu C H, Liu J Y, Wu W, Zhang K, Shi X Q, Kou J Z, Zhai J Y, Wang Z L 2016 ACS Nano 10 1572Google Scholar

    [94]

    Zhou Z, Zhang Z, Zhang Q L, Yang H, Zhu Y L, Wang Y Y, Chen L 2020 ACS Appl. Mater. Interfaces 12 1567Google Scholar

    [95]

    Kim S R, Yoo J H, Cho Y S, Park J W 2019 Mater. Res. Express 6 086311Google Scholar

    [96]

    Li J, Zhao C M, Xia K, Liu X, Li D, Han J 2019 Appl. Surf. Sci. 463 626Google Scholar

    [97]

    Lee Y, Kim S, Kim D, Lee C, Park H, Lee J H 2020 Appl. Surf. Sci. 509 145328Google Scholar

    [98]

    Naik R, T S R 2019 Mater. Res. Express 6 115330Google Scholar

    [99]

    Khalifa M, Mahendran A, Anandhan S 2019 J. Polym. Res. 26 73Google Scholar

    [100]

    Zhang Z, Chen Y, Guo J S 2019 Physica E 105 212Google Scholar

    [101]

    Khalifa M, Mahendran A, Anandhan S 2018 Polym. Compos. 40 1663Google Scholar

    [102]

    Bairagi S, Ali S W 2019 Eur. Polym. J. 116 554Google Scholar

    [103]

    Fakhri P, Amini B, Bagherzadeh R, Kashfi M, Latifi M, Yavari N, Asadi Kani S, Kong L X 2019 RSC Adv. 9 10117Google Scholar

    [104]

    Bairagi S, Ali S W 2020 Org. Electron. 78 105547Google Scholar

    [105]

    Godfrey D, Nirmal D, Arivazhagan L, Rathes Kannan R, Issac Nelson P, Rajesh S, Vidhya B, Mohankumar N 2020 Physica E 118 113931Google Scholar

    [106]

    Chen J Y, Qiu Y, Yang D C, She J, Wang Z Y 2020 J. Mater. Sci.- Mater. Electron. 31 5584Google Scholar

    [107]

    Ye S B, Cheng C, Chen X M, Chen X L, Shao J Y, Zhang J, Hu H W, Tian H M, Li X M, Ma L, Jia W B 2019 Nano Energy 60 701Google Scholar

    [108]

    Wang A C, Hu M, Zhou L W, Qiang X Y 2019 Nanomaterials (Basel) 9 349Google Scholar

    [109]

    He P, Chen W L, Li J P, Zhang H, Li Y W, Wang E B 2020 Sci. Bull. 65 35Google Scholar

    [110]

    Khadtare S, Ko E J, Kim Y H, Lee H S, Moon D K 2019 Sens. Actuators, A Phys. 299 111575Google Scholar

    [111]

    Ramadoss A, Saravanakumar B, Lee S W, Kim Y S, Kim S J, Wang Z L 2015 ACS Nano 9 4337Google Scholar

    [112]

    Mandal D, Henkel K, Schmeisser D 2014 Phys. Chem. Chem. Phys. 16 10403Google Scholar

  • [1] 邓浩程, 李祎, 田双双, 张晓星, 肖淞. 面向高性能摩擦纳米发电机的电介质材料.  , 2024, 73(7): 070702. doi: 10.7498/aps.73.20240150
    [2] 郭瑞雪, 艾保全. 可形变自驱动粒子在不对称周期管中的定向输运.  , 2023, 72(20): 200501. doi: 10.7498/aps.72.20230825
    [3] 郭唯琛, 艾保全, 贺亮. 机器学习回归不确定性揭示自驱动活性粒子的群集相变.  , 2023, 72(20): 200701. doi: 10.7498/aps.72.20230896
    [4] 梁帅博, 袁涛, 邱扬, 张震, 妙亚宁, 韩竞峰, 刘秀童, 姚春丽. 钛酸钡介电调控提升纸基摩擦纳米发电机输出性能.  , 2022, 71(7): 077701. doi: 10.7498/aps.71.20212022
    [5] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用.  , 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [6] 曹春蕾, 徐进良, 叶文力. 周期性爆沸诱导的液滴自驱动.  , 2021, 70(24): 244703. doi: 10.7498/aps.70.20211386
    [7] 王闯, 鲍容容, 潘曹峰. 基于纳米发电机的触觉传感在柔性可穿戴电子设备中的研究与应用.  , 2021, 70(10): 100705. doi: 10.7498/aps.70.20202157
    [8] 马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬. 基于拟合衰减差自补偿的分布式光纤温度传感器.  , 2020, 69(3): 030701. doi: 10.7498/aps.69.20191456
    [9] 仲颖, 施夏清. 自驱动杆状粒子在半柔性弹性环中的集体行为.  , 2020, 69(8): 080507. doi: 10.7498/aps.69.20200561
    [10] 丁亚飞, 陈翔宇. 基于摩擦纳米发电机的可穿戴能源器件.  , 2020, 69(17): 170202. doi: 10.7498/aps.69.20200867
    [11] 谈溥川, 赵超超, 樊瑜波, 李舟. 自驱动柔性生物医学传感器的研究进展.  , 2020, 69(17): 178704. doi: 10.7498/aps.69.20201012
    [12] 吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇. 收集振动能的摩擦纳米发电机设计与输出性能.  , 2019, 68(19): 190201. doi: 10.7498/aps.68.20190806
    [13] 刘昱, 任国斌, 靳文星, 吴越, 杨宇光, 简水生. 基于模场自积增强检测的光纤声光旋转传感器.  , 2018, 67(1): 014208. doi: 10.7498/aps.67.20171525
    [14] 华昀峰, 章林溪. 自驱动颗粒体系中的熵力.  , 2017, 66(19): 190701. doi: 10.7498/aps.66.190701
    [15] 王雷磊, 崔海航, 张静, 郑旭, 王磊, 陈力. 不同粒径Janus微球的自驱动:实验及驱动机制对比.  , 2016, 65(22): 220201. doi: 10.7498/aps.65.220201
    [16] 王海峰, 李旺, 顾国彪, 沈俊, 滕启治. 风力发电机自循环蒸发内冷系统稳定性的研究.  , 2016, 65(3): 030501. doi: 10.7498/aps.65.030501
    [17] 崔海航, 谭晓君, 张鸿雁, 陈力. 自驱动Janus微球近壁运动特性实验与数值模拟研究.  , 2015, 64(13): 134705. doi: 10.7498/aps.64.134705
    [18] 齐俊杰, 徐旻轩, 胡小峰, 张跃. 一维纳米氧化锌自驱动紫外探测器的构建与性能研究.  , 2015, 64(17): 172901. doi: 10.7498/aps.64.172901
    [19] 白福忠, 饶长辉. 针孔直径对自参考干涉波前传感器测量精度的影响.  , 2010, 59(6): 4056-4064. doi: 10.7498/aps.59.4056
    [20] 马锦秀, 徐至展. 双束“自陷”激光驱动的电子等离子体波的拍频激发.  , 1988, 37(5): 735-742. doi: 10.7498/aps.37.735
计量
  • 文章访问数:  16594
  • PDF下载量:  636
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-24
  • 修回日期:  2020-06-28
  • 上网日期:  2020-09-01
  • 刊出日期:  2020-09-05

/

返回文章
返回
Baidu
map