搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PAN/MoS2柔性复合纳米纤维膜的压电传感特性

张恒博 李银辉 李玮栋 高飞 殷荣艳 梁建国 赵鹏 周赟磊 李朋伟 边桂彬

引用本文:
Citation:

PAN/MoS2柔性复合纳米纤维膜的压电传感特性

张恒博, 李银辉, 李玮栋, 高飞, 殷荣艳, 梁建国, 赵鹏, 周赟磊, 李朋伟, 边桂彬

Piezoelectric sensing properties of PAN/MoS2 flexible composite nanofiber film

ZHANG Hengbo, LI Yinhui, LI Weidong, GAO Fei, YIN Rongyan, LIANG Jianguo, ZHAO Peng, ZHOU Yunlei, LI Pengwei, BIAN Guibin
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 柔性压电纳米材料可以将机械能转换为电能为微纳电子设备供电. 近年来, 随着对压电技术的研究, 二硫化钼(MoS2)已被报道用于增强复合材料的压电性能. 本文采用静电纺丝法制备了聚丙烯腈/MoS2 (PAN/MoS2)柔性复合纳米纤维膜压电传感器, 系统地研究了MoS2纳米片的含量对PAN/MoS2复合纤维膜压电性能的影响. 结果表明, 当MoS2掺杂质量含量为3.0%时, PAN/MoS2复合纤维膜传感器的开路输出电压达到最大值为4.64 V, 短路输出电流为2.69 μA, 输出功率达到3.46 μW, 比纯PAN制备的传感器的电压电流分别提高了140%与160%. 与纯PAN相比, PAN/MoS2复合纤维膜的压电常数d33提高了4.86倍. 本文制备的PAN/MoS2柔性复合纤维膜传感器可以为商用电容充电, 电容放电可成功点亮绿色LED, 并在无源条件下实时监测自行车轮胎运行状况. PAN/MoS2柔性复合纤维膜传感器在经过10000次循环敲击测试电压输出无明显波动, 稳定性良好. PAN/MoS2柔性复合纳米纤维膜传感器具有柔性好、成本低和自供电等特点, 有望在可穿戴/便携式电子设备、智能机器人、智能设备等领域具有广阔的应用前景.
    Flexible piezoelectric materials can convert mechanical energy into electrical energy to power micro/nano electronic devices. In recent years, research into piezoelectric technologies has revealed that molybdenum disulfide (MoS2) can improve the piezoelectric properties of composite materials. In this research the fabrication of a PAN/MoS2 flexible composite nanofiber film piezoelectric sensor via electrospinning is presented. The influence of MoS2 nanosheet content on the piezoelectric performance of the PAN/MoS2 composite nanofiber films is systematically investigated, and the morphology and structure of the composite nanofiber films are characterized. The results show that MoS2 is uniformly distributed in the composite nanofiber films, and the zigzag conformation of the PAN molecular is enhanced by adding MoS2. As the MoS2 doping content increases, the performance of the PAN/MoS2 composite nanofiber film sensor shows a first-increasing-and-then-decreasing trend, and ultimately reaching a maximum value when the MoS2 weight content is 3.0%. When the MoS2 doping content increases from 0% to 3.0%, the open-circuit output voltage of the PAN/MoS2 composite nanofiber film sensor increases from 1.92 V to 4.64 V, and the short-circuit output current increases from 1.03 μA to 2.69 μA. At 3.0% MoS2 doping, the maximum output power of the PAN/MoS2 composite nanofiber film sensor reaches 3.46 μW, with an internal resistance of approximately 10 MΩ. The output voltage of the composite nanofiber film sensor increases with the applied external force increasing. At a frequency of 10 Hz, when external forces of 2 N, 3 N, 4 N, 5 N, and 6 N are applied, the sensor output voltages are 2 V, 3.4 V, 5.9 V, 8.7 V, and 10.3 V, respectively. Compared with pure PAN film, the PAN/MoS2 composite nanofiber film has a piezoelectric constant d33 increases by 4.86 times. The PAN/MoS2 composite nanofiber film sensor can efficiently charge commercial capacitors, and the discharging of capacitors can successfully power a green LED. Additionally, it can monitor in real-time, under passive conditions, the bending state of the knee and the forward movement of the bicycle wheel during cycling. After 10000 impact cycles, the PAN/MoS2 composite nanofiber film sensor shows stable voltage output with no obvious fluctuations, demonstrating excellent stability. All in all, the PAN/MoS2 flexible composite nanofiber film sensor exhibits outstanding flexibility, low cost, and self-powered capabilities, showing promising potential for applications in wearable/portable electronics, smart devices, and intelligent robotics.
  • 图 1  (a) MoS2的XRD图谱; (b) MoS2质量含量为0%—5.0%的PAN/MoS2复合纳米纤维膜的XRD图谱与(c) FTIR图

    Fig. 1.  (a) The XRD pattern of MoS2; (b) the XRD patterns of PAN/MoS2 composite nanofiber films with MoS2 weight contents ranging from 0% to 5.0%, as well as (c) the corresponding FTIR spectra.

    图 2  (a) 块状MoS2的SEM图; (b) 图(a)红色框所示区域的放大图; (c) 分散后MoS2的SEM图; (d) 图(c)红色框所示区域的放大图; (e) 分散后MoS2的TEM图; (f) 图(e)红色框所示区域的HR-TEM图

    Fig. 2.  (a) SEM image of bulk MoS2; (b) magnified view of the region indicated by the red square in panel (a); (c) SEM image of dispersed MoS2; (d) magnified view of the region indicated by the red square in panel (c); (e) TEM image of dispersed MoS2; (f) HR-TEM image of the region indicated by the red square in panel (e).

    图 3  不同MoS2含量的PAN/MoS2复合纳米纤维膜的SEM图像 (a) 纯PAN; (b) PAN/MoS2-1; (c) PAN/MoS2-2; (d) PAN/MoS2-3; (e) PAN/MoS2-4; (f) PAN/MoS2-5

    Fig. 3.  SEM images of PAN/MoS2 composite nanofiber films with different contents of MoS2: (a) Pure PAN; (b) PAN/MoS2-1; (c) PAN/MoS2-2; (d) PAN/MoS2-3; (e) PAN/MoS2-4; (f) PAN/MoS2-5.

    图 4  PAN/MoS2复合纳米纤维膜的EDS扫描图

    Fig. 4.  EDS scan of PAN/MoS2 composite nanofiber film.

    图 5  PAN/MoS2复合纳米纤维膜的EDS分析图

    Fig. 5.  EDS analysis of PAN/MoS2 composite nanofiber film

    图 6  (a) 纯PAN的TEM图; (b), (c) PAN/MoS2复合纳米纤维的TEM图; (d) 图a红色框所示区域的HR-TEM图; (e) 图b红色框所示区域的HR-TEM图; (f) 图c红色框所示区域的HR-TEM图;

    Fig. 6.  (a) TEM image of pure PAN; (b), (c) TEM images of PAN/MoS2 composite nanofibers; (d) HR-TEM image of the region indicated by the red square in panel (a); (e) HR-TEM image of the region indicated by the red square in panel (b); (f) HR-TEM image of the region indicated by the red square in panel (c).

    图 7  不同MoS2质量含量(1.0%, 2.0%, 3.0%, 4.0%, 5.0%)的PAN/MoS2复合纳米纤维膜和纯PAN纳米纤维膜的输出性能 (a) 开路电压; (c) 短路电流; (b), (d) 电压和电流最大值图

    Fig. 7.  Output performance of the PAN/MoS2 composite nanofiber film with different weight content of MoS2 1.0%, 2.0%, 3.0%, 4.0%, 5.0% and pure PAN nanofiber film: (a) Open-circuit voltage; (c) short-circuit current; (b), (d) diagram of the maximum value of voltage and current.

    图 8  (a) 不同外部负载电阻的PAN/MoS2-3的开路电压和瞬时功率; (b) 正向和反向连接中PAN/MoS2-3的开路电压; (c) 不同机械力作用下PAN/MoS2-3的输出电压; (d) PAN/MoS2-3的输出电压值和施加的机械力拟合曲线图

    Fig. 8.  (a) Open-circuit voltage and instantaneous power of PAN/MoS2-3 with different external load resistors; (b) open-circuit voltage of PAN/MoS2-3 in forward and reverse connections; (c) output voltage of PAN/MoS2-3 under different applied mechanical forces; (d) plot of output voltage values of PAN/MoS2-3 and applied mechanical forces fitting curve.

    图 9  PAN/MoS2复合纳米纤维膜的铁电性能 (a) 介电常数随频率的变化; (b) 极化-电场磁滞回线(P-E); (c) 室温下介电常数(103 Hz下的εr)和剩余极化强度随MoS2含量增加的变化; (d) 压电系数(d33)

    Fig. 9.  Ferroelectric properties of the PAN/MoS2 composite nanofiber films: (a) Variation of dielectric constant with frequency; (b) polarization–electric field hysteresis loops (P-E); (c) the variation of dielectric constant (εr at 103Hz) and remnant polarization with increasing MoS2 content at room temperature; (d) the piezoelectric coefficient (d33).

    图 10  (a) 由PAN/MoS2-3充电的电容器的充电曲线. 插图左图: 包含电容器的桥式整流器电路的示意图. 右图: 充电电容器点亮LED的光学照片; (b) PAN/MoS2-3作为自行车传感器的示意图; (c) 膝盖弯曲时PAN/MoS2-3输出电压随时间变化; (d) 车轮运动时不同负载下PAN/MoS2-3的电压输出图; (e) 车轮移动时不同速度下PAN/MoS2-3的电压输出图

    Fig. 10.  (a) Charging curve of a capacitor charged by the PAN/MoS2-3. Inset left: schematic illustration of a bridge rectifier circuit containing the capacitor. Inset right: Optical photograph of a LED lighted by the charged capacitor; (b) schematic diagram of PAN/MoS2-3 as a sensor applied to bicycles; (c) PAN/MoS2-3 output voltage variation over time as the knee is flexed; (d) voltage output diagram of PAN/MoS2-3 under various loads during forward wheel movement; (e) voltage output diagram of PAN/MoS2-3 at different speeds during forward wheel movement.

    图 11  PAN/MoS2复合纳米纤维膜传感器工作原理示意图

    Fig. 11.  Schematic diagram of the working principle of PAN/MoS2 composite nanofiber film sensor.

    图 12  PAN/MoS2-3在10000次施压-释放循环中的输出性能

    Fig. 12.  Output performance of PAN/MoS2-3 for pressing-releasing 10000 cycles.

    表 1  不同MoS2质量含量PAN/MoS2复合纳米纤维膜传感器电学性能

    Table 1.  Electrical properties of PAN/MoS2 composite nanofiber film sensor with different MoS2 weight contents.

    MoS2 weight content/%Voltage/VCurrent/μAεr(at 103 Hz)Pr/(μC·cm–2)d33/(pC·N–1)
    01.921.031.190.561.25
    12.361.611.500.972.58
    23.562.422.051.204.36
    34.642.692.461.396.08
    44.022.342.321.365.59
    52.802.071.621.143.28
    下载: 导出CSV
    Baidu
  • [1]

    Rjafallah A, Hajjaji A, Guyomar D, Kandoussi K, Belhora F, Boughaleb Y 2018 J. Compos. Mater. 53 613

    [2]

    Chen C, Wen Z, Shi J, Jian X, Li P, Yeow J T W, Sun X 2020 Nat. Commun. 11 4143Google Scholar

    [3]

    Hajra S, Panda S, Khanberh H, Vivekananthan V, Chamanehpour E, Mishra Y K, Kim H J 2023 Nano Energy 115 10872

    [4]

    Xu Q, Wen J, Qin Y 2021 Nano Energy 86 106080Google Scholar

    [5]

    Korkmaz S, Kariper İ A 2021 Nano Energy 84 105888Google Scholar

    [6]

    Panda S, Hajra S, Kim H G, Achary P G R, Pakawanit P, Yang Y, Mishra Y K, Kim H J 2023 ACS Appl. Mater. Interfaces 15 36096Google Scholar

    [7]

    Satyaranjan B, Shahid-ul-Islam M, Mulvihill D M, Wazed A 2023 Nano Energy 111 108414Google Scholar

    [8]

    Zhang W, Wu G, Zeng H, Li Z, Wu W, Jiang H, Zhang W, Wu R, Huang Y, Lei Z 2023 Polymers 15 2766Google Scholar

    [9]

    Ma X, Zhukov S, von Seggern H, Sessler G M, Ben Dali O, Kupnik M, Dai Y, He P, Zhang X 2023 Adv. Electron. Mater. 9 2201070Google Scholar

    [10]

    Qi F, Xu L, He Y, Yan H, Liu H 2023 Cryst. Res. Technol. 58 2300119Google Scholar

    [11]

    Guo H, Li L, Wang F, Kim S, Sun H 2022 ACS Appl. Mater. Interfaces 14 34733Google Scholar

    [12]

    Bhadwal N, Ben Mrad R, Behdinan K 2023 Nanomaterials 13 3170Google Scholar

    [13]

    Tao J, Wang Y, Zheng X, Zhao C, Jin X, Wang W, Lin T 2023 Nano Energy 118 108987Google Scholar

    [14]

    Song K, Zhao R, Wang Z L, Yang Y 2019 Adv. Mater. 31 1902831Google Scholar

    [15]

    Kim M, Fan J 2021 Adv. Fiber Mater. 3 160Google Scholar

    [16]

    Bhatt A, Singh V, Bamola P, Aswal D, Rawat S, Rana S, Dwivedi C, Singh B, Sharma H 2023 J. Alloys Compd. 960 170664Google Scholar

    [17]

    Srivastava M, Banerjee S, Bairagi S, Singh P, Kumar B, Singh P, Kale R D, Mulvihill D M, Ali S W 2024 Chem. Eng. J. 480 147963

    [18]

    Zhang M, Howe R C T, Woodward R I, Kelleher E J R, Torrisi F, Hu G, Popov S V, Taylor J R, Hasan T 2015 Nano Res. 8 1522Google Scholar

    [19]

    Aji A S, Nishi R, Ago H, Ohno Y 2020 Nano Energy 68 105242

    [20]

    Evans J M, Lee K S, Yan E X, Thompson A C, Morla M B, Meier M C, Ifkovits Z P, Carim A I, Lewis N S 2022 ACS Mater. Lett. 4 1475Google Scholar

    [21]

    Maity K, Mahanty B, Sinha T K, Garain S, Biswas A, Ghosh S K, Manna S, Ray S K, Mandal D 2017 Energy Technol. 5 234Google Scholar

    [22]

    Han S A, Kim T H, Kim S K, Lee K H, Ho H J, Lee J H, Kim S W 2018 Adv. Mater. 30 1801134

    [23]

    Zhu H, Wang Y, Xiao J, Liu M, Xiong S, Wong Z J, Ye Z, Ye Y, Yin X, Zhang X 2015 Nat. Nanotechnol. 10 151Google Scholar

    [24]

    Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz T F, Hone J, Wang Z L 2014 Nature 514 470Google Scholar

    [25]

    Jiang L, Xie H, Hou Y, Wang S, Xia Y, Li Y, Hu G H, Yang Q L, Xiong C, Gao Z D 2019 Ceram. Int. 45 11347Google Scholar

    [26]

    Chen S L, Li J L, Song Y H, Yang Q L, Shi Z Q, Xiong C X 2021 Cellulose 28 6513Google Scholar

    [27]

    Cao S, Zou H, Jiang B, Li M, Yuan Q 2022 Nano Energy 102 107635Google Scholar

    [28]

    Singh A K, Kumar P, Late D, Kumar A, Patel S, Singh J 2018 Appl. Mater. Today 13 242Google Scholar

    [29]

    Yin R Y, Li Y H, Li W D, Gao F, Chen X, Li T, Liang J, Zhang H, Gao H, Li P, Zhou Y 2024 Nano Energy 124 109488Google Scholar

    [30]

    Han Y, Huang D, Ma Y, He G, Hu J, Zhang J, Hu N, Su Y, Zhou Z, Zhang Y, Yang Z 2018 ACS Appl. Mater. Interfaces 10 22640Google Scholar

    [31]

    Zhang J, Han D, Wang Y, Wang L, Chen X, Qiao X, Yu X 2020 Microchim. Acta 187 321Google Scholar

    [32]

    Li X, Li Y, Li Y, Tan J, Zhang J, Zhang H, Liang J, Li T, Liu Y, Jiang H, Li P 2022 ACS Appl. Mater. Interfaces 14 46789Google Scholar

    [33]

    Wang W, Zheng Y, Jin X, Sun Y, Lu B, Wang H, Fang J, Shao H, Lin T 2019 Nano Energy 56 588Google Scholar

    [34]

    Ren X, Fan H, Zhao Y, Liu Z 2016 ACS Appl. Mater. Interfaces 8 26190Google Scholar

    [35]

    Li Y, Su X, Liang K, Luo C, Li P, Hu J, Li G, Jiang H, Wang K 2021 Microelectron. Eng. 244 111557

    [36]

    Ning M, Lu M, Li J, Chen Z, Dou Y, Wang C, F Rehman, Cao M, Jin H 2015 Nanoscale 7 15734Google Scholar

    [37]

    Zhang W, Zhang V, Wu H, Yan H, Qi S 2018 J. Alloys Compd. 751 34

    [38]

    Bowen C R, Kim H A, Weaver P M, Dunn S 2014 Energy Environ. Sci. 7 25Google Scholar

    [39]

    Luo C, Hu S, Xia M, Li P, Hu J, Li G, Jiang H, Zhang W 2018 Energy Technol. 6 922Google Scholar

  • [1] 李银辉, 殷荣艳, 梁建国, 李玮栋, 范凯, 周赟磊. 一种耐高温的柔性压电/热释电双功能传感器.  , doi: 10.7498/aps.73.20241006
    [2] 黄新玉, 韩旭, 陈辉, 武旭, 刘立巍, 季威, 王业亮, 黄元. 二维材料解理技术新进展及展望.  , doi: 10.7498/aps.71.20220030
    [3] 吴帆帆, 季怡汝, 杨威, 张广宇. 二硫化钼的电子能带结构和低温输运实验进展.  , doi: 10.7498/aps.71.20220015
    [4] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管.  , doi: 10.7498/aps.71.20220738
    [5] 蒋黎英, 易颖婷, 易早, 杨华, 李治友, 苏炬, 周自刚, 陈喜芳, 易有根. 基于单层二硫化钼的高品质因子、高品质因数的四波段完美吸收器.  , doi: 10.7498/aps.70.20202163
    [6] 刘凯龙, 彭冬生. 拉伸应变对单层二硫化钼光电特性的影响.  , doi: 10.7498/aps.70.20210816
    [7] 孟凡, 胡劲华, 王辉, 邹戈胤, 崔建功, 赵乐. 等离子体谐振腔对二硫化钼的荧光增强效应.  , doi: 10.7498/aps.68.20191121
    [8] 张新成, 廖文虎, 左敏. 非共振圆偏振光作用下单层二硫化钼电子结构及其自旋/谷输运性质.  , doi: 10.7498/aps.67.20180213
    [9] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究.  , doi: 10.7498/aps.67.20181255
    [10] 危阳, 马新国, 祝林, 贺华, 黄楚云. 二硫化钼/石墨烯异质结的界面结合作用及其对带边电位影响的理论研究.  , doi: 10.7498/aps.66.087101
    [11] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟.  , doi: 10.7498/aps.65.176201
    [12] 张理勇, 方粮, 彭向阳. 单层二硫化钼多相性质及相变的第一性原理研究.  , doi: 10.7498/aps.65.127101
    [13] 唐海通, 敖玉辉, 王聪, 赵瑞雪, 高忠民, 孟繁玲. 聚丙烯腈基碳纤维原丝在纺丝过程中纳米孔变化规律与机理研究.  , doi: 10.7498/aps.64.046101
    [14] 张理勇, 方粮, 彭向阳. 金衬底调控单层二硫化钼电子性能的第一性原理研究.  , doi: 10.7498/aps.64.187101
    [15] 傅重源, 邢淞, 沈涛, 邰博, 董前民, 舒海波, 梁培. 水热法合成纳米花状二硫化钼及其微观结构表征.  , doi: 10.7498/aps.64.016102
    [16] 魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅. Au的金属颗粒对二硫化钼发光增强.  , doi: 10.7498/aps.63.217802
    [17] 董海明. 低温下二硫化钼电子迁移率研究.  , doi: 10.7498/aps.62.206101
    [18] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究.  , doi: 10.7498/aps.61.227102
    [19] 张彩红, 盛毅, 田红, 徐耀, 吕春祥, 吴忠华. 全谱拟合法研究聚丙烯腈基碳纤维形成过程中晶态结构演变.  , doi: 10.7498/aps.60.036101
    [20] 高鹏举, 章文贡, 陈淑卿, 周秀华, 肖丽足. YBCO/聚丙烯腈杂化膜及其超导性研究.  , doi: 10.7498/aps.59.583
计量
  • 文章访问数:  353
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-02
  • 修回日期:  2025-01-23
  • 上网日期:  2025-02-09

/

返回文章
返回
Baidu
map