-
柔性压电纳米材料可以将机械能转换为电能为微纳电子设备供电. 近年来, 随着对压电技术的研究, 二硫化钼(MoS2)已被报道用于增强复合材料的压电性能. 本文采用静电纺丝法制备了聚丙烯腈/MoS2 (PAN/MoS2)柔性复合纳米纤维膜压电传感器, 系统地研究了MoS2纳米片的含量对PAN/MoS2复合纤维膜压电性能的影响. 结果表明, 当MoS2掺杂质量含量为3.0%时, PAN/MoS2复合纤维膜传感器的开路输出电压达到最大值为4.64 V, 短路输出电流为2.69 μA, 输出功率达到3.46 μW, 比纯PAN制备的传感器的电压电流分别提高了140%与160%. 与纯PAN相比, PAN/MoS2复合纤维膜的压电常数d33提高了4.86倍. 本文制备的PAN/MoS2柔性复合纤维膜传感器可以为商用电容充电, 电容放电可成功点亮绿色LED, 并在无源条件下实时监测自行车轮胎运行状况. PAN/MoS2柔性复合纤维膜传感器在经过10000次循环敲击测试电压输出无明显波动, 稳定性良好. PAN/MoS2柔性复合纳米纤维膜传感器具有柔性好、成本低和自供电等特点, 有望在可穿戴/便携式电子设备、智能机器人、智能设备等领域具有广阔的应用前景.Flexible piezoelectric materials can convert mechanical energy into electrical energy to power micro/nano electronic devices. In recent years, research into piezoelectric technologies has revealed that molybdenum disulfide (MoS2) can improve the piezoelectric properties of composite materials. In this research the fabrication of a PAN/MoS2 flexible composite nanofiber film piezoelectric sensor via electrospinning is presented. The influence of MoS2 nanosheet content on the piezoelectric performance of the PAN/MoS2 composite nanofiber films is systematically investigated, and the morphology and structure of the composite nanofiber films are characterized. The results show that MoS2 is uniformly distributed in the composite nanofiber films, and the zigzag conformation of the PAN molecular is enhanced by adding MoS2. As the MoS2 doping content increases, the performance of the PAN/MoS2 composite nanofiber film sensor shows a first-increasing-and-then-decreasing trend, and ultimately reaching a maximum value when the MoS2 weight content is 3.0%. When the MoS2 doping content increases from 0% to 3.0%, the open-circuit output voltage of the PAN/MoS2 composite nanofiber film sensor increases from 1.92 V to 4.64 V, and the short-circuit output current increases from 1.03 μA to 2.69 μA. At 3.0% MoS2 doping, the maximum output power of the PAN/MoS2 composite nanofiber film sensor reaches 3.46 μW, with an internal resistance of approximately 10 MΩ. The output voltage of the composite nanofiber film sensor increases with the applied external force increasing. At a frequency of 10 Hz, when external forces of 2 N, 3 N, 4 N, 5 N, and 6 N are applied, the sensor output voltages are 2 V, 3.4 V, 5.9 V, 8.7 V, and 10.3 V, respectively. Compared with pure PAN film, the PAN/MoS2 composite nanofiber film has a piezoelectric constant d33 increases by 4.86 times. The PAN/MoS2 composite nanofiber film sensor can efficiently charge commercial capacitors, and the discharging of capacitors can successfully power a green LED. Additionally, it can monitor in real-time, under passive conditions, the bending state of the knee and the forward movement of the bicycle wheel during cycling. After 10000 impact cycles, the PAN/MoS2 composite nanofiber film sensor shows stable voltage output with no obvious fluctuations, demonstrating excellent stability. All in all, the PAN/MoS2 flexible composite nanofiber film sensor exhibits outstanding flexibility, low cost, and self-powered capabilities, showing promising potential for applications in wearable/portable electronics, smart devices, and intelligent robotics.
-
Keywords:
- PAN /
- MoS2 /
- flexible nanofiber film /
- piezoelectric sensor
-
图 2 (a) 块状MoS2的SEM图; (b) 图(a)红色框所示区域的放大图; (c) 分散后MoS2的SEM图; (d) 图(c)红色框所示区域的放大图; (e) 分散后MoS2的TEM图; (f) 图(e)红色框所示区域的HR-TEM图
Fig. 2. (a) SEM image of bulk MoS2; (b) magnified view of the region indicated by the red square in panel (a); (c) SEM image of dispersed MoS2; (d) magnified view of the region indicated by the red square in panel (c); (e) TEM image of dispersed MoS2; (f) HR-TEM image of the region indicated by the red square in panel (e).
图 3 不同MoS2含量的PAN/MoS2复合纳米纤维膜的SEM图像 (a) 纯PAN; (b) PAN/MoS2-1; (c) PAN/MoS2-2; (d) PAN/MoS2-3; (e) PAN/MoS2-4; (f) PAN/MoS2-5
Fig. 3. SEM images of PAN/MoS2 composite nanofiber films with different contents of MoS2: (a) Pure PAN; (b) PAN/MoS2-1; (c) PAN/MoS2-2; (d) PAN/MoS2-3; (e) PAN/MoS2-4; (f) PAN/MoS2-5.
图 6 (a) 纯PAN的TEM图; (b), (c) PAN/MoS2复合纳米纤维的TEM图; (d) 图a红色框所示区域的HR-TEM图; (e) 图b红色框所示区域的HR-TEM图; (f) 图c红色框所示区域的HR-TEM图;
Fig. 6. (a) TEM image of pure PAN; (b), (c) TEM images of PAN/MoS2 composite nanofibers; (d) HR-TEM image of the region indicated by the red square in panel (a); (e) HR-TEM image of the region indicated by the red square in panel (b); (f) HR-TEM image of the region indicated by the red square in panel (c).
图 7 不同MoS2质量含量(1.0%, 2.0%, 3.0%, 4.0%, 5.0%)的PAN/MoS2复合纳米纤维膜和纯PAN纳米纤维膜的输出性能 (a) 开路电压; (c) 短路电流; (b), (d) 电压和电流最大值图
Fig. 7. Output performance of the PAN/MoS2 composite nanofiber film with different weight content of MoS2 1.0%, 2.0%, 3.0%, 4.0%, 5.0% and pure PAN nanofiber film: (a) Open-circuit voltage; (c) short-circuit current; (b), (d) diagram of the maximum value of voltage and current.
图 8 (a) 不同外部负载电阻的PAN/MoS2-3的开路电压和瞬时功率; (b) 正向和反向连接中PAN/MoS2-3的开路电压; (c) 不同机械力作用下PAN/MoS2-3的输出电压; (d) PAN/MoS2-3的输出电压值和施加的机械力拟合曲线图
Fig. 8. (a) Open-circuit voltage and instantaneous power of PAN/MoS2-3 with different external load resistors; (b) open-circuit voltage of PAN/MoS2-3 in forward and reverse connections; (c) output voltage of PAN/MoS2-3 under different applied mechanical forces; (d) plot of output voltage values of PAN/MoS2-3 and applied mechanical forces fitting curve.
图 9 PAN/MoS2复合纳米纤维膜的铁电性能 (a) 介电常数随频率的变化; (b) 极化-电场磁滞回线(P-E); (c) 室温下介电常数(103 Hz下的εr)和剩余极化强度随MoS2含量增加的变化; (d) 压电系数(d33)
Fig. 9. Ferroelectric properties of the PAN/MoS2 composite nanofiber films: (a) Variation of dielectric constant with frequency; (b) polarization–electric field hysteresis loops (P-E); (c) the variation of dielectric constant (εr at 103Hz) and remnant polarization with increasing MoS2 content at room temperature; (d) the piezoelectric coefficient (d33).
图 10 (a) 由PAN/MoS2-3充电的电容器的充电曲线. 插图左图: 包含电容器的桥式整流器电路的示意图. 右图: 充电电容器点亮LED的光学照片; (b) PAN/MoS2-3作为自行车传感器的示意图; (c) 膝盖弯曲时PAN/MoS2-3输出电压随时间变化; (d) 车轮运动时不同负载下PAN/MoS2-3的电压输出图; (e) 车轮移动时不同速度下PAN/MoS2-3的电压输出图
Fig. 10. (a) Charging curve of a capacitor charged by the PAN/MoS2-3. Inset left: schematic illustration of a bridge rectifier circuit containing the capacitor. Inset right: Optical photograph of a LED lighted by the charged capacitor; (b) schematic diagram of PAN/MoS2-3 as a sensor applied to bicycles; (c) PAN/MoS2-3 output voltage variation over time as the knee is flexed; (d) voltage output diagram of PAN/MoS2-3 under various loads during forward wheel movement; (e) voltage output diagram of PAN/MoS2-3 at different speeds during forward wheel movement.
表 1 不同MoS2质量含量PAN/MoS2复合纳米纤维膜传感器电学性能
Table 1. Electrical properties of PAN/MoS2 composite nanofiber film sensor with different MoS2 weight contents.
MoS2 weight content/% Voltage/V Current/μA εr(at 103 Hz) Pr/(μC·cm–2) d33/(pC·N–1) 0 1.92 1.03 1.19 0.56 1.25 1 2.36 1.61 1.50 0.97 2.58 2 3.56 2.42 2.05 1.20 4.36 3 4.64 2.69 2.46 1.39 6.08 4 4.02 2.34 2.32 1.36 5.59 5 2.80 2.07 1.62 1.14 3.28 -
[1] Rjafallah A, Hajjaji A, Guyomar D, Kandoussi K, Belhora F, Boughaleb Y 2018 J. Compos. Mater. 53 613
[2] Chen C, Wen Z, Shi J, Jian X, Li P, Yeow J T W, Sun X 2020 Nat. Commun. 11 4143
Google Scholar
[3] Hajra S, Panda S, Khanberh H, Vivekananthan V, Chamanehpour E, Mishra Y K, Kim H J 2023 Nano Energy 115 10872
[4] Xu Q, Wen J, Qin Y 2021 Nano Energy 86 106080
Google Scholar
[5] Korkmaz S, Kariper İ A 2021 Nano Energy 84 105888
Google Scholar
[6] Panda S, Hajra S, Kim H G, Achary P G R, Pakawanit P, Yang Y, Mishra Y K, Kim H J 2023 ACS Appl. Mater. Interfaces 15 36096
Google Scholar
[7] Satyaranjan B, Shahid-ul-Islam M, Mulvihill D M, Wazed A 2023 Nano Energy 111 108414
Google Scholar
[8] Zhang W, Wu G, Zeng H, Li Z, Wu W, Jiang H, Zhang W, Wu R, Huang Y, Lei Z 2023 Polymers 15 2766
Google Scholar
[9] Ma X, Zhukov S, von Seggern H, Sessler G M, Ben Dali O, Kupnik M, Dai Y, He P, Zhang X 2023 Adv. Electron. Mater. 9 2201070
Google Scholar
[10] Qi F, Xu L, He Y, Yan H, Liu H 2023 Cryst. Res. Technol. 58 2300119
Google Scholar
[11] Guo H, Li L, Wang F, Kim S, Sun H 2022 ACS Appl. Mater. Interfaces 14 34733
Google Scholar
[12] Bhadwal N, Ben Mrad R, Behdinan K 2023 Nanomaterials 13 3170
Google Scholar
[13] Tao J, Wang Y, Zheng X, Zhao C, Jin X, Wang W, Lin T 2023 Nano Energy 118 108987
Google Scholar
[14] Song K, Zhao R, Wang Z L, Yang Y 2019 Adv. Mater. 31 1902831
Google Scholar
[15] Kim M, Fan J 2021 Adv. Fiber Mater. 3 160
Google Scholar
[16] Bhatt A, Singh V, Bamola P, Aswal D, Rawat S, Rana S, Dwivedi C, Singh B, Sharma H 2023 J. Alloys Compd. 960 170664
Google Scholar
[17] Srivastava M, Banerjee S, Bairagi S, Singh P, Kumar B, Singh P, Kale R D, Mulvihill D M, Ali S W 2024 Chem. Eng. J. 480 147963
[18] Zhang M, Howe R C T, Woodward R I, Kelleher E J R, Torrisi F, Hu G, Popov S V, Taylor J R, Hasan T 2015 Nano Res. 8 1522
Google Scholar
[19] Aji A S, Nishi R, Ago H, Ohno Y 2020 Nano Energy 68 105242
[20] Evans J M, Lee K S, Yan E X, Thompson A C, Morla M B, Meier M C, Ifkovits Z P, Carim A I, Lewis N S 2022 ACS Mater. Lett. 4 1475
Google Scholar
[21] Maity K, Mahanty B, Sinha T K, Garain S, Biswas A, Ghosh S K, Manna S, Ray S K, Mandal D 2017 Energy Technol. 5 234
Google Scholar
[22] Han S A, Kim T H, Kim S K, Lee K H, Ho H J, Lee J H, Kim S W 2018 Adv. Mater. 30 1801134
[23] Zhu H, Wang Y, Xiao J, Liu M, Xiong S, Wong Z J, Ye Z, Ye Y, Yin X, Zhang X 2015 Nat. Nanotechnol. 10 151
Google Scholar
[24] Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz T F, Hone J, Wang Z L 2014 Nature 514 470
Google Scholar
[25] Jiang L, Xie H, Hou Y, Wang S, Xia Y, Li Y, Hu G H, Yang Q L, Xiong C, Gao Z D 2019 Ceram. Int. 45 11347
Google Scholar
[26] Chen S L, Li J L, Song Y H, Yang Q L, Shi Z Q, Xiong C X 2021 Cellulose 28 6513
Google Scholar
[27] Cao S, Zou H, Jiang B, Li M, Yuan Q 2022 Nano Energy 102 107635
Google Scholar
[28] Singh A K, Kumar P, Late D, Kumar A, Patel S, Singh J 2018 Appl. Mater. Today 13 242
Google Scholar
[29] Yin R Y, Li Y H, Li W D, Gao F, Chen X, Li T, Liang J, Zhang H, Gao H, Li P, Zhou Y 2024 Nano Energy 124 109488
Google Scholar
[30] Han Y, Huang D, Ma Y, He G, Hu J, Zhang J, Hu N, Su Y, Zhou Z, Zhang Y, Yang Z 2018 ACS Appl. Mater. Interfaces 10 22640
Google Scholar
[31] Zhang J, Han D, Wang Y, Wang L, Chen X, Qiao X, Yu X 2020 Microchim. Acta 187 321
Google Scholar
[32] Li X, Li Y, Li Y, Tan J, Zhang J, Zhang H, Liang J, Li T, Liu Y, Jiang H, Li P 2022 ACS Appl. Mater. Interfaces 14 46789
Google Scholar
[33] Wang W, Zheng Y, Jin X, Sun Y, Lu B, Wang H, Fang J, Shao H, Lin T 2019 Nano Energy 56 588
Google Scholar
[34] Ren X, Fan H, Zhao Y, Liu Z 2016 ACS Appl. Mater. Interfaces 8 26190
Google Scholar
[35] Li Y, Su X, Liang K, Luo C, Li P, Hu J, Li G, Jiang H, Wang K 2021 Microelectron. Eng. 244 111557
[36] Ning M, Lu M, Li J, Chen Z, Dou Y, Wang C, F Rehman, Cao M, Jin H 2015 Nanoscale 7 15734
Google Scholar
[37] Zhang W, Zhang V, Wu H, Yan H, Qi S 2018 J. Alloys Compd. 751 34
[38] Bowen C R, Kim H A, Weaver P M, Dunn S 2014 Energy Environ. Sci. 7 25
Google Scholar
[39] Luo C, Hu S, Xia M, Li P, Hu J, Li G, Jiang H, Zhang W 2018 Energy Technol. 6 922
Google Scholar
计量
- 文章访问数: 353
- PDF下载量: 7
- 被引次数: 0