-
柔性压电纳米材料可以将机械能转换为电能为微纳电子设备供电,近年来,随着对压电技术的研究,二硫化钼(MoS2)已被报道用于增强复合材料的压电性能。本文采用静电纺丝法制备了PAN/MoS2柔性复合纳米纤维膜压电传感器,系统研究了MoS2纳米片的含量对PAN/MoS2复合纤维膜压电性能的影响。结果表明,当MoS2掺杂含量为3.0 wt%时,PAN/MoS2复合纤维膜传感器的开路输出电压达到最大值为4.64 V,短路输出电流为2.69μA,输出功率达到3.46μW,比纯PAN制备的传感器的电压电流分别提高了140%与160%。与纯PAN相比,PAN/MoS2复合纤维膜的压电常数d33提高了4.86倍。本文制备的PAN/MoS2柔性复合纤维膜传感器可以为商用电容充电,电容放电可成功点亮绿色LED,并在无源条件下实时监测自行车轮胎运行状况。PAN/MoS2柔性复合纤维膜传感器在经过10000次循环敲击测试电压输出无明显波动,稳定性良好。PAN/MoS2柔性复合纳米纤维膜传感器具有柔性好、成本低和自供电等特点,有望在可穿戴/便携式电子设备、智能机器人、智能设备等领域具有广阔的应用前景。
-
关键词:
- 聚丙烯腈(PAN) /
- 二硫化钼(MoS2) /
- 柔性纳米纤维膜 /
- 压电传感
Flexible piezoelectric materials can convert mechanical energy into electrical energy to power micro/nano electronic devices. In recent years, research into piezoelectric technologies has revealed that molybdenum disulfide (MoS2) can enhance the piezoelectric properties of composite materials. This paper presents the fabrication of a PAN/MoS2 flexible composite nanofiber film piezoelectric sensor via electrospinning. The influence of MoS2 nanosheet content on the piezoelectric performance of the PAN/MoS2 composite nanofiber films is systematically investigated, and the morphology and structure of the composite nanofiber films are characterized. The results show that MoS2 is uniformly distributed in the composite nanofiber films, and the zigzag conformation of the PAN molecular was enhanced with the addition of MoS2. As the MoS2 doping content increases, the performance of the PAN/MoS2 composite nanofiber film sensor shows a trend of first increasing and then decreasing, reaching the maximum value when the MoS2 content is 3.0 wt%. When the MoS2 doping content increases from 0 wt% to 3.0 wt%, the open-circuit output voltage of the PAN/MoS2 composite nanofiber film sensor increases from 1.92 V to 4.64 V, and the short-circuit output current increases from 1.03 μA to 2.69 μA. At 3.0 wt% MoS2 doping, the maximum output power of the PAN/MoS2 composite nanofiber film sensor reaches 3.46 μW, with an internal resistance of approximately 10 MΩ. The output voltage of the composite nanofiber film sensor increases with the applied external force. At a frequency of 10 Hz, when external forces of 2 N, 3 N, 4 N, 5 N, and 6 N are applied, the sensor output voltages are 2 V, 3.4 V, 5.9 V, 8.7 V, and 10.3 V, respectively. Compared with pure PAN, the piezoelectric constant d33 of the PAN/MoS2 composite nanofiber film increases by 4.86 times. The PAN/MoS2 composite nanofiber film sensor can efficiently charge commercial capacitors, and the discharged capacitors can successfully power a green LED. Additionally, it can monitor in real-time, under passive conditions, the bending state of the knee and the forward movement of the bicycle wheel during cycling. After 10,000 impact cycles, the PAN/MoS2 composite nanofiber film sensor shows stable voltage output with no obvious fluctuations, demonstrating excellent stability. Overall, the PAN/MoS2 flexible composite nanofiber film sensor exhibits outstanding flexibility, low cost, and self-powered capabilities, showing promising potential for applications in wearable/portable electronics, smart devices, and intelligent robotics.-
Keywords:
- PAN /
- Molybdenum disulfide /
- Flexible Nanofiber film /
- Piezoelectric sensor
-
[1] Rjafallah A, Hajjaji A, Guyomar D, Kandoussi K, Belhora F, Boughaleb Y 2018. J. Compos. Mater. 53 613
[2] Chen C, Wen Z, Shi J, Jian X, Li P, Yeow J T W, Sun X 2020. Nat. Commun. 11 4143
[3] Hajra S, Panda S, Khanberh H, Vivekananthan V, Chamanehpour E, Mishra Y K, Kim H J 2023Nano Energy 115 10872
[4] Xu Q, Wen J, Qin Y. 2021. Nano Energy 86 106080
[5] Korkmaz S, Kariper İ A. 2021Nano Energy 84 105888
[6] Panda S, Hajra S, Kim H G, Achary P G R, Pakawanit P, Yang Y, Mishra Y K, Kim H J. 2023ACS Appl. Mater. Interfaces. 15 36096
[7] Satyaranjan B, Shahid-ul-Islam M, Mulvihill D M, Wazed A. 2023Nano Energy 111 108414
[8] Zhang W, Wu G, Zeng H, Li Z, Wu W, Jiang H, Zhang W, Wu R, Huang Y, Lei Z. 2023 Polymers 15 2766
[9] Ma X, Zhukov S, von Seggern H, Sessler G M, Ben Dali O, Kupnik M, Dai Y, He P, Zhang X 2023Adv. Electron. Mater. 9 2201070
[10] Qi F, Xu L, He Y, Yan H, Liu H 2023Cryst. Res. Technol. 58 2300119
[11] Guo H, Li L, Wang F, Kim S, Sun H 2022ACS Appl. Mater. Interfaces. 14 34733
[12] Bhadwal N, Ben Mrad R, Behdinan K 2023Nanomaterials 13 3170
[13] Tao J, Wang Y, Zheng X, Zhao C, Jin X, Wang W, Lin T 2023Nano Energy 118 108987
[14] Song K, Zhao R, Wang Z L, Yang Y 2019Adv. Mater. 31 1902831
[15] Kim M, Fan J 2021Adv. Fiber Mater. 3 160
[16] Bhatt A, Singh V, Bamola P, Aswal D, Rawat S, Rana S, Dwivedi C, Singh B, Sharma H 2023J. Alloys Compd. 960 170664
[17] Srivastava M, Banerjee S, Bairagi S, Singh P, Kumar B, Singh P, Kale R D, Mulvihill D M, Ali S W 2024Chem. Eng. J. 480 147963
[18] Zhang M, Howe R C T, Woodward R I, Kelleher E J R, Torrisi F, Hu G, Popov S V, Taylor J R, Hasan T 2015Nano Res 8 1522
[19] Aji A S, Nishi R, Ago H, Ohno Y 2020Nano Energy 68 105242
[20] Evans J M, Lee K S, Yan E X, Thompson A C, Morla M B, Meier M C, Ifkovits Z P, Carim A I, Lewis N S 2022ACS Mater. Lett. 4 1475
[21] Maity K, Mahanty B, Sinha T K, Garain S, Biswas A, Ghosh S K, Manna S, Ray S K, Mandal D 2017Energy Technol. 5 234
[22] Han S A, Kim T H, Kim S K, Lee K H, Ho H J, Lee J H, Kim S W 2018Adv. Mater. 30 1801134
[23] Zhu H, Wang Y, Xiao J, Liu M, Xiong S, Wong Z J, Ye Z, Ye Y, Yin X, Zhang X 2015Nat. Nanotechnol. 10 151
[24] Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz T F, Hone J, Wang Z L 2014Nature 514 470
[25] Jiang L, Xie H, Hou Y, Wang S, Xia Y, Li Y, Hu G H, Yang Q L, Xiong C, Gao Z D 2019Ceram Int 45 11347
[26] Chen S L, Li J L, Song Y H, Yang Q L, Shi Z Q, Xiong C X 2021Cellulose 28 6513
[27] Cao S, Zou H, Jiang B, Li M, Yuan Q 2022Nano Energy 102 107635
[28] Singh A K, Kumar P, Late D, Kumar A, Patel S, Singh J 2018Appl Mater Today 13 242
[29] Yin R Y, Li Y H, Li W D, Gao F, Chen X, Li T, Liang J, Zhang H, Gao H, Li P, Zhou Y 2024Nano Energy 124 109488
[30] Han Y, Huang D, Ma Y, He G, Hu J, Zhang J, Hu N, Su Y, Zhou Z, Zhang Y, Yang Z 2018ACS Appl. Mater. Interfaces. 10 22640
[31] Zhang J, Han D, Wang Y, Wang L, Chen X, Qiao X, Yu X 2020Microchim. Acta 187 321
[32] Li X, Li Y, Li Y, Tan J, Zhang J, Zhang H, Liang J, Li T, Liu Y, Jiang H, Li P 2022ACS Appl. Mater. Interfaces. 14 46789
[33] Wang W, Zheng Y, Jin X, Sun Y, Lu B, Wang H, Fang J, Shao H, Lin T 2019Nano Energy 56 588
[34] Ren X, Fan H, Zhao Y, Liu Z 2016ACS Appl. Mater. Interfaces. 8 26190
[35] Li Y, Su X, Liang K, Luo C, Li P, Hu J, Li G, Jiang H, Wang K 2021Microelectron Eng 244 111557
[36] Ning M, Lu M, Li J, Chen Z, Dou Y, Wang C, F Rehman, Cao M, Jin H 2015Nanoscale 7 15734
[37] Zhang W, Zhang V, Wu H, Yan H, Qi S 2018J Alloys Compd 751 34
[38] Bowen C R, Kim H A, Weaver P M, Dunn S 2014Energy Environ Sci 7 25
[39] Luo C, Hu S, Xia M, Li P, Hu J, Li G, Jiang H, Zhang W 2018Energy Technol 6 922
计量
- 文章访问数: 118
- PDF下载量: 3
- 被引次数: 0