搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PAN/MoS2柔性复合纳米纤维膜的压电传感特性

张恒博 李银辉 李玮栋 高飞 殷荣艳 梁建国 赵鹏 周赟磊 李朋伟 边桂彬

引用本文:
Citation:

PAN/MoS2柔性复合纳米纤维膜的压电传感特性

张恒博, 李银辉, 李玮栋, 高飞, 殷荣艳, 梁建国, 赵鹏, 周赟磊, 李朋伟, 边桂彬

The Piezoelectric Sensing Properties of PAN/MoS2 Flexible Composite Nanofiber Film

Zhang Hengbo, Li Yinhui, Li Weidong, Gao Fei, Yin Rongyan, Liang Jianguo, Zhao Peng, Zhou Yunlei, Li Pengwei, Bian Guibin
PDF
导出引用
  • 柔性压电纳米材料可以将机械能转换为电能为微纳电子设备供电,近年来,随着对压电技术的研究,二硫化钼(MoS2)已被报道用于增强复合材料的压电性能。本文采用静电纺丝法制备了PAN/MoS2柔性复合纳米纤维膜压电传感器,系统研究了MoS2纳米片的含量对PAN/MoS2复合纤维膜压电性能的影响。结果表明,当MoS2掺杂含量为3.0 wt%时,PAN/MoS2复合纤维膜传感器的开路输出电压达到最大值为4.64 V,短路输出电流为2.69μA,输出功率达到3.46μW,比纯PAN制备的传感器的电压电流分别提高了140%与160%。与纯PAN相比,PAN/MoS2复合纤维膜的压电常数d33提高了4.86倍。本文制备的PAN/MoS2柔性复合纤维膜传感器可以为商用电容充电,电容放电可成功点亮绿色LED,并在无源条件下实时监测自行车轮胎运行状况。PAN/MoS2柔性复合纤维膜传感器在经过10000次循环敲击测试电压输出无明显波动,稳定性良好。PAN/MoS2柔性复合纳米纤维膜传感器具有柔性好、成本低和自供电等特点,有望在可穿戴/便携式电子设备、智能机器人、智能设备等领域具有广阔的应用前景。
    Flexible piezoelectric materials can convert mechanical energy into electrical energy to power micro/nano electronic devices. In recent years, research into piezoelectric technologies has revealed that molybdenum disulfide (MoS2) can enhance the piezoelectric properties of composite materials. This paper presents the fabrication of a PAN/MoS2 flexible composite nanofiber film piezoelectric sensor via electrospinning. The influence of MoS2 nanosheet content on the piezoelectric performance of the PAN/MoS2 composite nanofiber films is systematically investigated, and the morphology and structure of the composite nanofiber films are characterized. The results show that MoS2 is uniformly distributed in the composite nanofiber films, and the zigzag conformation of the PAN molecular was enhanced with the addition of MoS2. As the MoS2 doping content increases, the performance of the PAN/MoS2 composite nanofiber film sensor shows a trend of first increasing and then decreasing, reaching the maximum value when the MoS2 content is 3.0 wt%. When the MoS2 doping content increases from 0 wt% to 3.0 wt%, the open-circuit output voltage of the PAN/MoS2 composite nanofiber film sensor increases from 1.92 V to 4.64 V, and the short-circuit output current increases from 1.03 μA to 2.69 μA. At 3.0 wt% MoS2 doping, the maximum output power of the PAN/MoS2 composite nanofiber film sensor reaches 3.46 μW, with an internal resistance of approximately 10 MΩ. The output voltage of the composite nanofiber film sensor increases with the applied external force. At a frequency of 10 Hz, when external forces of 2 N, 3 N, 4 N, 5 N, and 6 N are applied, the sensor output voltages are 2 V, 3.4 V, 5.9 V, 8.7 V, and 10.3 V, respectively. Compared with pure PAN, the piezoelectric constant d33 of the PAN/MoS2 composite nanofiber film increases by 4.86 times. The PAN/MoS2 composite nanofiber film sensor can efficiently charge commercial capacitors, and the discharged capacitors can successfully power a green LED. Additionally, it can monitor in real-time, under passive conditions, the bending state of the knee and the forward movement of the bicycle wheel during cycling. After 10,000 impact cycles, the PAN/MoS2 composite nanofiber film sensor shows stable voltage output with no obvious fluctuations, demonstrating excellent stability. Overall, the PAN/MoS2 flexible composite nanofiber film sensor exhibits outstanding flexibility, low cost, and self-powered capabilities, showing promising potential for applications in wearable/portable electronics, smart devices, and intelligent robotics.
  • [1]

    Rjafallah A, Hajjaji A, Guyomar D, Kandoussi K, Belhora F, Boughaleb Y 2018. J. Compos. Mater. 53 613

    [2]

    Chen C, Wen Z, Shi J, Jian X, Li P, Yeow J T W, Sun X 2020. Nat. Commun. 11 4143

    [3]

    Hajra S, Panda S, Khanberh H, Vivekananthan V, Chamanehpour E, Mishra Y K, Kim H J 2023Nano Energy 115 10872

    [4]

    Xu Q, Wen J, Qin Y. 2021. Nano Energy 86 106080

    [5]

    Korkmaz S, Kariper İ A. 2021Nano Energy 84 105888

    [6]

    Panda S, Hajra S, Kim H G, Achary P G R, Pakawanit P, Yang Y, Mishra Y K, Kim H J. 2023ACS Appl. Mater. Interfaces. 15 36096

    [7]

    Satyaranjan B, Shahid-ul-Islam M, Mulvihill D M, Wazed A. 2023Nano Energy 111 108414

    [8]

    Zhang W, Wu G, Zeng H, Li Z, Wu W, Jiang H, Zhang W, Wu R, Huang Y, Lei Z. 2023 Polymers 15 2766

    [9]

    Ma X, Zhukov S, von Seggern H, Sessler G M, Ben Dali O, Kupnik M, Dai Y, He P, Zhang X 2023Adv. Electron. Mater. 9 2201070

    [10]

    Qi F, Xu L, He Y, Yan H, Liu H 2023Cryst. Res. Technol. 58 2300119

    [11]

    Guo H, Li L, Wang F, Kim S, Sun H 2022ACS Appl. Mater. Interfaces. 14 34733

    [12]

    Bhadwal N, Ben Mrad R, Behdinan K 2023Nanomaterials 13 3170

    [13]

    Tao J, Wang Y, Zheng X, Zhao C, Jin X, Wang W, Lin T 2023Nano Energy 118 108987

    [14]

    Song K, Zhao R, Wang Z L, Yang Y 2019Adv. Mater. 31 1902831

    [15]

    Kim M, Fan J 2021Adv. Fiber Mater. 3 160

    [16]

    Bhatt A, Singh V, Bamola P, Aswal D, Rawat S, Rana S, Dwivedi C, Singh B, Sharma H 2023J. Alloys Compd. 960 170664

    [17]

    Srivastava M, Banerjee S, Bairagi S, Singh P, Kumar B, Singh P, Kale R D, Mulvihill D M, Ali S W 2024Chem. Eng. J. 480 147963

    [18]

    Zhang M, Howe R C T, Woodward R I, Kelleher E J R, Torrisi F, Hu G, Popov S V, Taylor J R, Hasan T 2015Nano Res 8 1522

    [19]

    Aji A S, Nishi R, Ago H, Ohno Y 2020Nano Energy 68 105242

    [20]

    Evans J M, Lee K S, Yan E X, Thompson A C, Morla M B, Meier M C, Ifkovits Z P, Carim A I, Lewis N S 2022ACS Mater. Lett. 4 1475

    [21]

    Maity K, Mahanty B, Sinha T K, Garain S, Biswas A, Ghosh S K, Manna S, Ray S K, Mandal D 2017Energy Technol. 5 234

    [22]

    Han S A, Kim T H, Kim S K, Lee K H, Ho H J, Lee J H, Kim S W 2018Adv. Mater. 30 1801134

    [23]

    Zhu H, Wang Y, Xiao J, Liu M, Xiong S, Wong Z J, Ye Z, Ye Y, Yin X, Zhang X 2015Nat. Nanotechnol. 10 151

    [24]

    Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz T F, Hone J, Wang Z L 2014Nature 514 470

    [25]

    Jiang L, Xie H, Hou Y, Wang S, Xia Y, Li Y, Hu G H, Yang Q L, Xiong C, Gao Z D 2019Ceram Int 45 11347

    [26]

    Chen S L, Li J L, Song Y H, Yang Q L, Shi Z Q, Xiong C X 2021Cellulose 28 6513

    [27]

    Cao S, Zou H, Jiang B, Li M, Yuan Q 2022Nano Energy 102 107635

    [28]

    Singh A K, Kumar P, Late D, Kumar A, Patel S, Singh J 2018Appl Mater Today 13 242

    [29]

    Yin R Y, Li Y H, Li W D, Gao F, Chen X, Li T, Liang J, Zhang H, Gao H, Li P, Zhou Y 2024Nano Energy 124 109488

    [30]

    Han Y, Huang D, Ma Y, He G, Hu J, Zhang J, Hu N, Su Y, Zhou Z, Zhang Y, Yang Z 2018ACS Appl. Mater. Interfaces. 10 22640

    [31]

    Zhang J, Han D, Wang Y, Wang L, Chen X, Qiao X, Yu X 2020Microchim. Acta 187 321

    [32]

    Li X, Li Y, Li Y, Tan J, Zhang J, Zhang H, Liang J, Li T, Liu Y, Jiang H, Li P 2022ACS Appl. Mater. Interfaces. 14 46789

    [33]

    Wang W, Zheng Y, Jin X, Sun Y, Lu B, Wang H, Fang J, Shao H, Lin T 2019Nano Energy 56 588

    [34]

    Ren X, Fan H, Zhao Y, Liu Z 2016ACS Appl. Mater. Interfaces. 8 26190

    [35]

    Li Y, Su X, Liang K, Luo C, Li P, Hu J, Li G, Jiang H, Wang K 2021Microelectron Eng 244 111557

    [36]

    Ning M, Lu M, Li J, Chen Z, Dou Y, Wang C, F Rehman, Cao M, Jin H 2015Nanoscale 7 15734

    [37]

    Zhang W, Zhang V, Wu H, Yan H, Qi S 2018J Alloys Compd 751 34

    [38]

    Bowen C R, Kim H A, Weaver P M, Dunn S 2014Energy Environ Sci 7 25

    [39]

    Luo C, Hu S, Xia M, Li P, Hu J, Li G, Jiang H, Zhang W 2018Energy Technol 6 922

  • [1] 程奥迪, 余辉洋, 汪辰涛, 范梓阳, 张佳琪, 吴可滢, 黄见秋. 基于PVDF-EtP纳米纤维膜的压电性能研究及其在压力传感器中的应用.  , doi: 10.7498/aps.74.20241680
    [2] 李银辉, 殷荣艳, 梁建国, 李玮栋, 范凯, 周赟磊. 一种耐高温的柔性压电/热释电双功能传感器.  , doi: 10.7498/aps.73.20241006
    [3] 张明媚, 郭亚涛, 付旭日, 李梦蕾, 任宝藏, 郑军, 袁瑞玚. 铁磁电极单层二硫化钼纳米带量子结构中的自旋开关效应和巨磁阻.  , doi: 10.7498/aps.72.20230483
    [4] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器.  , doi: 10.7498/aps.69.20191390
    [5] 申茂良, 张岩. 基于压电纳米发电机的柔性传感与能量存储器件.  , doi: 10.7498/aps.69.20200784
    [6] 顾品超, 张楷亮, 冯玉林, 王芳, 苗银萍, 韩叶梅, 张韩霞. 层状二硫化钼研究进展.  , doi: 10.7498/aps.65.018102
    [7] 王卫东, 李龙龙, 杨晨光, 李明林. 单层二硫化钼纳米带弛豫性能的分子动力学研究.  , doi: 10.7498/aps.65.160201
    [8] 傅重源, 邢淞, 沈涛, 邰博, 董前民, 舒海波, 梁培. 水热法合成纳米花状二硫化钼及其微观结构表征.  , doi: 10.7498/aps.64.016102
    [9] 唐海通, 敖玉辉, 王聪, 赵瑞雪, 高忠民, 孟繁玲. 聚丙烯腈基碳纤维原丝在纺丝过程中纳米孔变化规律与机理研究.  , doi: 10.7498/aps.64.046101
    [10] 魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅. Au的金属颗粒对二硫化钼发光增强.  , doi: 10.7498/aps.63.217802
    [11] 张添乐, 黄曦, 郑凯, 张欣梧, 王宇杰, 武丽明, 张晓青, 郑洁, 朱彪. 极化电压对聚丙烯压电驻极体膜压电性能的影响.  , doi: 10.7498/aps.63.157703
    [12] 马玺越, 陈克安, 丁少虎, 张冰瑞. 用于三层有源隔声结构误差传感的压电传感薄膜阵列及其优化设计.  , doi: 10.7498/aps.62.124301
    [13] 张欣梧, 张晓青. 聚丙烯压电驻极体膜的压电和声学性能研究.  , doi: 10.7498/aps.62.167702
    [14] 张海燕, 曹亚萍, 于建波, 陈先华. 采用单个压电传感器的单模式兰姆波激发频率的选择.  , doi: 10.7498/aps.60.114301
    [15] 张彩红, 盛毅, 田红, 徐耀, 吕春祥, 吴忠华. 全谱拟合法研究聚丙烯腈基碳纤维形成过程中晶态结构演变.  , doi: 10.7498/aps.60.036101
    [16] 高鹏举, 章文贡, 陈淑卿, 周秀华, 肖丽足. YBCO/聚丙烯腈杂化膜及其超导性研究.  , doi: 10.7498/aps.59.583
    [17] 张鹏锋, 夏钟福, 邱勋林, 王飞鹏, 吴贤勇. 充电参数对聚丙烯蜂窝膜驻极体压电性的影响.  , doi: 10.7498/aps.55.904
    [18] 邱勋林, 夏钟福, 安振连, 吴贤勇. 热膨胀处理的聚丙烯蜂窝膜驻极体的压电性.  , doi: 10.7498/aps.54.402
    [19] 张鹏锋, 夏钟福, 邱勋林, 吴贤勇. 聚丙烯蜂窝膜驻极体压电系数的测量及压电性的改善.  , doi: 10.7498/aps.54.397
    [20] 唐明道. 聚丙烯腈与硝酸银络合后的热处理产物的红外光谱.  , doi: 10.7498/aps.19.830
计量
  • 文章访问数:  118
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-09

/

返回文章
返回
Baidu
map