Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Microstructure and electrical properties of Ni-Fe-B-Si-P amorphous alloys controlled by supercooled liquid-phase annealing

FENG Rui ZHANG Zhongyi CHEN Chunhua SHANG Bolin LI Dongmei YU Peng

Citation:

Microstructure and electrical properties of Ni-Fe-B-Si-P amorphous alloys controlled by supercooled liquid-phase annealing

FENG Rui, ZHANG Zhongyi, CHEN Chunhua, SHANG Bolin, LI Dongmei, YU Peng
cstr: 32037.14.aps.74.20250368
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Amorphous alloys have become a research hotpot in the field of materials science due to their unique long-range disordered structure and excellent physical properties. However, the complex microstructural evolution and electronic transport mechanisms of amorphous alloys under thermal effects still need in depth investigating. In this work, Ni40Fe35B15Si7P3 and Ni50Fe25B15Si7P3 amorphous alloy ribbons are prepared by the melt-spinning technique, and the as-cast samples are subjected to annealing treatments within the supercooled liquid region. The results show that annealing within the supercooled liquid region enhances the short-range order, reduces the free volume, and increases the atomic packing density of the alloys. The volume fractions of the local quasi-crystalline clusters in the annealed samples increase to 26%-34%. Furthermore, the increases in scattering centers and the release of internal stresses induced by the supercooled liquid region annealing lead to an increase in the electrical resistivity of the alloys. Specifically, the resistivity of the Ni40Fe35B15Si7P3 alloy increases from 131.8 μΩ·cm to 217.0 μΩ·cm, a increase of 64.6%. Under an applied magnetic field, the deflection of electron trajectories due to the Lorentz force and the magnetostriction effect further increases the resistivity of the alloys. Additionally, thermal activation releases the bound electrons and enhances their scattering, resulting in an increase in the carrier concentration and a decrease in the carrier mobility of the annealed alloys. This study demonstrates that annealing can effectively control the short-range order and free volume distribution of amorphous alloys, thereby influencing their electronic transport properties. The findings provide an experimental basis for designing high-performance amorphous alloy electronic devices.
      Corresponding author: LI Dongmei, dongmeili14@163.com ; YU Peng, pengyu@cqnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12404228, 52371148), the Science and Technology Research Program of Chongqing Education Commission of China (Grant No. KJQN202200510), and the Chongqing University Students Innovation and Entrepreneurship Training Program, China (Grant Nos. S202410637008, S202410637003).
    [1]

    Wang W H 2012 Prog. Mater. Sci. 57 487Google Scholar

    [2]

    Inoue A, Takeuchi A 2011 Acta Mater. 59 2243Google Scholar

    [3]

    Wu Y, Bei H, Wang Y L, Lu Z P, George E P, Gao Y F 2015 Int. J. Plasticity 71 136Google Scholar

    [4]

    王壮, 金凡, 李伟, 阮嘉艺, 王龙飞, 吴雪莲, 张义坤, 袁晨晨 2024 73 217101Google Scholar

    Wang Z, Jin F, Li W, Ruan J Y, Wang L F, Wu X L, Zhang Y K, Yuan C C 2024 Acta Phys. Sin. 73 217101Google Scholar

    [5]

    Lu W B, He M F, Yu D, Xie X M, Wang H, Wang S, Yuan C G, Chen A 2021 Mater. Design 210 110027Google Scholar

    [6]

    Chen M 2011 Npg Asia Mater. 3 82Google Scholar

    [7]

    Shen P P, Yuan F S, Zhou H B, Hu J, Sun B A 2023 J. Alloy. Compd. 44 169168Google Scholar

    [8]

    Li X, Ren Q, Xu G J, Zhao A C, Duan L 2024 J. Mater. Sci-Mater. El. 35 564Google Scholar

    [9]

    Nai J W, Kang J X, Guo L 2015 Sci. China Mater. 58 44Google Scholar

    [10]

    Yao Y G, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E G, Niu Q 2004 Phys. Rev. Lett. 92 037204Google Scholar

    [11]

    Liu W J, Zhang H X, Shi J A, Wang Z C, Song C, Wang X R, Chen N 2016 Nat. Commun. 7 13497Google Scholar

    [12]

    Wu M, Lou H B, Tse J S, Liu H Y, Pan Y M, Takahama K, Matsuoka T, Shimizu K, Jiang J Z 2016 Phys. Rev. B 94 054201Google Scholar

    [13]

    Zhang Y Q, Zhou L Y, Tao S Y, Jiao Y Z, Li J F, Zheng K M, Hu Y C, Fang K X, Song C, Zhong X Y 2021 Sci. China Mater. 64 2305Google Scholar

    [14]

    He S Y, Li Y G, Liu L, Jiang Y, Feng J J, Zhu W, Zhang J Y, Dong Z R, Deng Y, Luo J, Zhang W Q, Chen G 2020 Sci. Adv. 6 eaaz8423Google Scholar

    [15]

    Mo S, Zeng J, Zhang H, Wu Y N, Liu T, Ni H W 2023 J. Mater. Sci. Technol. 143 189Google Scholar

    [16]

    Li X S, Su F C, Zhou J, Mao Y C, Yang J M, Xue Z Y, Ke H B, Sun B A, Wang W H, Bai H Y 2024 Intermetallics 166 108201Google Scholar

    [17]

    Ma H J, Wei W Q, Bao W K, Shen X B, Wang C C, Wang W M 2020 Rare. Metal Mat. Eng. 49 2904 [马海健, 魏文庆, 鲍文科, 神祥博, 王长春, 王伟民 2020 稀有金属材料与工程 49 2904]Google Scholar

    Ma H J, Wei W Q, Bao W K, Shen X B, Wang C C, Wang W M 2020 Rare. Metal Mat. Eng. 49 2904Google Scholar

    [18]

    Tong X, Zhang Y, Wang Y C, Liang X Y, Zhang K, Zhang F, Cai Y F, Ke H B, Wang G, Shen J, Makino A, Wang W H 2022 J. Mater. Sci. Technol. 96 233Google Scholar

    [19]

    Jia J L, Wu Y, Shi L X, Wang R B, Guo W H, Bu H T, Shao Y, Chen N, Yao K F 2024 Mater. 17 1447Google Scholar

    [20]

    Zhang L K, Liu L M, Zhang R, Chen D, Ma G Z, Ye C G 2023 Mater. Res. Express 10 055201Google Scholar

    [21]

    Liu B B, Liu C Y, Jiang X, Zhen S Y, You L, Ye F 2021 Intermetallics 137 107283Google Scholar

    [22]

    Cao C C, Zhu L, Meng Y, Zhai X B, Wang Y G 2018 J. Magn. Magn. Mater. 456 274Google Scholar

    [23]

    Wang C, Tang Y, Ouyang X P, Wang H K 2025 Mat. Sci. Eng. A 924 147843Google Scholar

    [24]

    Zhang S, Wei C, Yang L, Lv J W, Zhang H R, Shi Z L, Zhang X Y, Ma M Z. 2022 Mat. Sci. Eng. A 840 142978Google Scholar

    [25]

    吴渊, 宋温丽, 周捷, 曹迪, 王辉, 刘雄军, 吕昭平 2017 66 176111Google Scholar

    Wu Y, Song W L, Zhou J, Cao D, Wang H, Liu X J, Lü Z P 2017 Acta Phys. Sin. 66 176111Google Scholar

    [26]

    Pan J, Duan F H 2021 Acta Metall. Sin. 57 439 [潘杰, 段峰辉 2021 金属学报 57 439]Google Scholar

    Pan J, Duan F H 2021 Acta Metall. Sin. 57 439Google Scholar

    [27]

    张志英, 汤迦南, 余杰, 王旭东, 黄罗超, 邹俊文, 唐浩, 张继康, 陈亚涛, 程东鹏 2018 中国腐蚀与防护学报 38 478Google Scholar

    Zhang Z Y, Tang J N, Yu J, Wang X D, Huang L C, Zhou J W, Tang H, Zhang J K, Chen Y T, Cheng D P 2018 J. Chin. Soc. Corros. Prot. 38 478Google Scholar

    [28]

    Teusner M, Mata J, Sharma N 2022 Curr. Opin. Electroche. 34 100990Google Scholar

    [29]

    刘文胜, 刘书华, 马运柱, 张佳佳, 叶晓珊 2015 稀有金属材料与工程 44 2459

    Liu W S, Liu S H, Ma Y Z, Zhang J J, Ye X S 2015 Rare Met. Mater. Eng. 44 2459

    [30]

    Ström P, Primetzhofer D 2021 Nucl. Mater. Energy 27 100979Google Scholar

    [31]

    陈仙, 王炎武, 王晓艳, 安书董, 王小波, 赵玉清 2014 63 246801Google Scholar

    Chen X, Wang Y W, Wang X Y, An S D, Wang X B, Zhao Y Q 2014 Acta Phys. Sin. 63 246801Google Scholar

    [32]

    Wang Q, Liu C T, Yang Y, Liu J B, Dong Y D, Lu J 2014 Sci. Rep-Uk. 4 4648Google Scholar

    [33]

    Wang Q, Liu C T, Yang Y, Dong Y D, Lu J 2011 Phys. Rev. Lett. 106 215505Google Scholar

    [34]

    Ezzat S S, Mani P D, Khaniya A, Kaden W, Gall D, Barmak K, Coffey K R 2019 J. Vac. Sci. Technol. A 37 031516Google Scholar

    [35]

    Guo Y M, Wang X C, Li X, Zhang T 2023 Mater. Lett. 336 133890Google Scholar

    [36]

    Yao X, Wang L Y, Shuai C J, Gao C D 2025 Mater. Lett. 384 138127Google Scholar

    [37]

    张广平, 李孟林, 吴细毛, 李春和, 罗雪梅 2014 材料研究学报 28 81Google Scholar

    Zhang G P, Li M L, Wu X M, Li C H, Luo X M 2014 Chin. J. Mater. Res. 28 81Google Scholar

  • 图 1  (a) Ni40Fe35B15Si7P3和(b) Ni50Fe25B15Si7P3合金退火前后的XRD图; (c) Ni40Fe35B15Si7P3和Ni50Fe25B15Si7P3合金退火前后的FWHM数值

    Figure 1.  (a) XRD patterns of Ni40Fe35B15Si7P3 and (b) Ni50Fe25B15Si7P3 alloys before and after annealing; (c) FWHM of Ni40Fe35B15Si7P3 and Ni50Fe25B15Si7P3 alloys before and after annealing.

    图 2  (a) Ni40Fe35B15Si7P3和(b) Ni50Fe25B15Si7P3合金退火前后的DSC曲线图

    Figure 2.  DSC curves of (a) Ni40Fe35B15Si7P3 and (b) Ni50Fe25B15Si7P3 alloys before and after annealing.

    图 3  退火前后合金SEM图像 (a) Ni40Fe35B15Si7P3; (b) A653; (c) Ni50Fe25B15Si7P3; (d) B673; (e) 与A653对应的EDS图

    Figure 3.  SEM images of (a)Ni40Fe35B15Si7P3, (b)A653, (c) Ni50Fe25B15Si7P3, (d) B673 alloys before and after annealing; (e) EDS image corresponding to A653.

    图 4  (a) Ni40Fe35B15Si7P3, (b) A653, (c) Ni50Fe25B15Si7P3, (d) B673合金退火前后TEM图像, 插图为对应的SAED图像

    Figure 4.  TEM images of (a) Ni40Fe35B15Si7P3, (b) A653, (c) Ni50Fe25B15Si7P3, and (d) B673 alloys before and after annealing with insets showing the corresponding SAED images.

    图 5  (a) Ni40Fe35B15Si7P3, (b) Ni50Fe25B15Si7P3, (c) A653, (d) B673合金TEM图的2D自相关映射图, 出现清晰条纹的图用红色方框标记, 对应局域类晶体结构

    Figure 5.  2D autocorrelation mapping of the TEM images of (a) Ni40Fe35B15Si7P3, (b) Ni50Fe25B15Si7P3, (c)A653, (d) B673alloys before and after annealing, with clearly defined striped patterns marked by red squares, corresponding to the local quasi-crystalline structures.

    图 6  (a) Ni40Fe35B15Si7P3和(b) Ni50Fe25B15Si7P3合金退火前后的归一化电阻率(ρT/ρ300 K)曲线图; (c) Ni40Fe35B15Si7P3和(d) Ni50Fe25B15Si7P3合金在1 T磁场下退火前后的归一化电阻率(ρH300 K)曲线图

    Figure 6.  Normalized resistivity (ρT300 K) curves of (a) Ni40Fe35B15Si7P3 and (b) Ni50Fe25B15Si7P3 alloys before and after annealing; normalized resistivity (ρH300 K) of (c) Ni40Fe35B15Si7P3 and (d) Ni50Fe25B15Si7P3 alloys before and after annealing under a 1 T magnetic field.

    图 7  (a) Ni40Fe35B15Si7P3和(b) Ni50Fe25B15Si7P3合金退火前后的室温载流子浓度与载流子迁移率曲线

    Figure 7.  Room-temperature carrier concentration and carrier mobility curves of (a) Ni40Fe35B15Si7P3 and (b) Ni50Fe25B15Si7P3 alloys before and after annealing.

    表 1  Ni40Fe35B15Si7P3和Ni50Fe25B15Si7P3合金退火前后的热力学参数

    Table 1.  Thermodynamic parameters of Ni40Fe35B15Si7P3 and Ni50Fe25B15Si7P3 alloys before and after annealing.

    Ni40Fe35B15Si7P3Tg/KNi50Fe25B15Si7P3Tg/K
    As-spun711.25As-spun702.13
    A643712.97B663703.56
    A653714.12B673704.96
    A663715.56B683706.05
    DownLoad: CSV

    表 2  Ni40Fe35B15Si7P3和Ni50Fe25B15Si7P3合金退火前后的霍尔参数

    Table 2.  Hall parameters of of Ni40Fe35B15Si7P3 and Ni50Fe25B15Si7P3 alloys before and after annealing.

    Ni40Fe35B15Si7P3 nH/(1020 cm–3)
    μ/(cm2·V–1·s-1) RH/(103 cm3·C–1) Ni50Fe25B15Si7P3 nH/(1020 cm–3) μ/(cm2·V–1·s–1) RH/(103 cm3·C–1)
    As-spun 1.40 205.17 –44.53 As-spun 1.37 278.17 –45.71
    A643 1.47 172.04 –42.36 B663 1.44 246.19 –43.24
    A653 1.50 156.51 –41.54 B673 1.48 224.32 –42.22
    A663 1.73 127.64 –36.02 B683 1.50 201.35 –41.59
    DownLoad: CSV
    Baidu
  • [1]

    Wang W H 2012 Prog. Mater. Sci. 57 487Google Scholar

    [2]

    Inoue A, Takeuchi A 2011 Acta Mater. 59 2243Google Scholar

    [3]

    Wu Y, Bei H, Wang Y L, Lu Z P, George E P, Gao Y F 2015 Int. J. Plasticity 71 136Google Scholar

    [4]

    王壮, 金凡, 李伟, 阮嘉艺, 王龙飞, 吴雪莲, 张义坤, 袁晨晨 2024 73 217101Google Scholar

    Wang Z, Jin F, Li W, Ruan J Y, Wang L F, Wu X L, Zhang Y K, Yuan C C 2024 Acta Phys. Sin. 73 217101Google Scholar

    [5]

    Lu W B, He M F, Yu D, Xie X M, Wang H, Wang S, Yuan C G, Chen A 2021 Mater. Design 210 110027Google Scholar

    [6]

    Chen M 2011 Npg Asia Mater. 3 82Google Scholar

    [7]

    Shen P P, Yuan F S, Zhou H B, Hu J, Sun B A 2023 J. Alloy. Compd. 44 169168Google Scholar

    [8]

    Li X, Ren Q, Xu G J, Zhao A C, Duan L 2024 J. Mater. Sci-Mater. El. 35 564Google Scholar

    [9]

    Nai J W, Kang J X, Guo L 2015 Sci. China Mater. 58 44Google Scholar

    [10]

    Yao Y G, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E G, Niu Q 2004 Phys. Rev. Lett. 92 037204Google Scholar

    [11]

    Liu W J, Zhang H X, Shi J A, Wang Z C, Song C, Wang X R, Chen N 2016 Nat. Commun. 7 13497Google Scholar

    [12]

    Wu M, Lou H B, Tse J S, Liu H Y, Pan Y M, Takahama K, Matsuoka T, Shimizu K, Jiang J Z 2016 Phys. Rev. B 94 054201Google Scholar

    [13]

    Zhang Y Q, Zhou L Y, Tao S Y, Jiao Y Z, Li J F, Zheng K M, Hu Y C, Fang K X, Song C, Zhong X Y 2021 Sci. China Mater. 64 2305Google Scholar

    [14]

    He S Y, Li Y G, Liu L, Jiang Y, Feng J J, Zhu W, Zhang J Y, Dong Z R, Deng Y, Luo J, Zhang W Q, Chen G 2020 Sci. Adv. 6 eaaz8423Google Scholar

    [15]

    Mo S, Zeng J, Zhang H, Wu Y N, Liu T, Ni H W 2023 J. Mater. Sci. Technol. 143 189Google Scholar

    [16]

    Li X S, Su F C, Zhou J, Mao Y C, Yang J M, Xue Z Y, Ke H B, Sun B A, Wang W H, Bai H Y 2024 Intermetallics 166 108201Google Scholar

    [17]

    Ma H J, Wei W Q, Bao W K, Shen X B, Wang C C, Wang W M 2020 Rare. Metal Mat. Eng. 49 2904 [马海健, 魏文庆, 鲍文科, 神祥博, 王长春, 王伟民 2020 稀有金属材料与工程 49 2904]Google Scholar

    Ma H J, Wei W Q, Bao W K, Shen X B, Wang C C, Wang W M 2020 Rare. Metal Mat. Eng. 49 2904Google Scholar

    [18]

    Tong X, Zhang Y, Wang Y C, Liang X Y, Zhang K, Zhang F, Cai Y F, Ke H B, Wang G, Shen J, Makino A, Wang W H 2022 J. Mater. Sci. Technol. 96 233Google Scholar

    [19]

    Jia J L, Wu Y, Shi L X, Wang R B, Guo W H, Bu H T, Shao Y, Chen N, Yao K F 2024 Mater. 17 1447Google Scholar

    [20]

    Zhang L K, Liu L M, Zhang R, Chen D, Ma G Z, Ye C G 2023 Mater. Res. Express 10 055201Google Scholar

    [21]

    Liu B B, Liu C Y, Jiang X, Zhen S Y, You L, Ye F 2021 Intermetallics 137 107283Google Scholar

    [22]

    Cao C C, Zhu L, Meng Y, Zhai X B, Wang Y G 2018 J. Magn. Magn. Mater. 456 274Google Scholar

    [23]

    Wang C, Tang Y, Ouyang X P, Wang H K 2025 Mat. Sci. Eng. A 924 147843Google Scholar

    [24]

    Zhang S, Wei C, Yang L, Lv J W, Zhang H R, Shi Z L, Zhang X Y, Ma M Z. 2022 Mat. Sci. Eng. A 840 142978Google Scholar

    [25]

    吴渊, 宋温丽, 周捷, 曹迪, 王辉, 刘雄军, 吕昭平 2017 66 176111Google Scholar

    Wu Y, Song W L, Zhou J, Cao D, Wang H, Liu X J, Lü Z P 2017 Acta Phys. Sin. 66 176111Google Scholar

    [26]

    Pan J, Duan F H 2021 Acta Metall. Sin. 57 439 [潘杰, 段峰辉 2021 金属学报 57 439]Google Scholar

    Pan J, Duan F H 2021 Acta Metall. Sin. 57 439Google Scholar

    [27]

    张志英, 汤迦南, 余杰, 王旭东, 黄罗超, 邹俊文, 唐浩, 张继康, 陈亚涛, 程东鹏 2018 中国腐蚀与防护学报 38 478Google Scholar

    Zhang Z Y, Tang J N, Yu J, Wang X D, Huang L C, Zhou J W, Tang H, Zhang J K, Chen Y T, Cheng D P 2018 J. Chin. Soc. Corros. Prot. 38 478Google Scholar

    [28]

    Teusner M, Mata J, Sharma N 2022 Curr. Opin. Electroche. 34 100990Google Scholar

    [29]

    刘文胜, 刘书华, 马运柱, 张佳佳, 叶晓珊 2015 稀有金属材料与工程 44 2459

    Liu W S, Liu S H, Ma Y Z, Zhang J J, Ye X S 2015 Rare Met. Mater. Eng. 44 2459

    [30]

    Ström P, Primetzhofer D 2021 Nucl. Mater. Energy 27 100979Google Scholar

    [31]

    陈仙, 王炎武, 王晓艳, 安书董, 王小波, 赵玉清 2014 63 246801Google Scholar

    Chen X, Wang Y W, Wang X Y, An S D, Wang X B, Zhao Y Q 2014 Acta Phys. Sin. 63 246801Google Scholar

    [32]

    Wang Q, Liu C T, Yang Y, Liu J B, Dong Y D, Lu J 2014 Sci. Rep-Uk. 4 4648Google Scholar

    [33]

    Wang Q, Liu C T, Yang Y, Dong Y D, Lu J 2011 Phys. Rev. Lett. 106 215505Google Scholar

    [34]

    Ezzat S S, Mani P D, Khaniya A, Kaden W, Gall D, Barmak K, Coffey K R 2019 J. Vac. Sci. Technol. A 37 031516Google Scholar

    [35]

    Guo Y M, Wang X C, Li X, Zhang T 2023 Mater. Lett. 336 133890Google Scholar

    [36]

    Yao X, Wang L Y, Shuai C J, Gao C D 2025 Mater. Lett. 384 138127Google Scholar

    [37]

    张广平, 李孟林, 吴细毛, 李春和, 罗雪梅 2014 材料研究学报 28 81Google Scholar

    Zhang G P, Li M L, Wu X M, Li C H, Luo X M 2014 Chin. J. Mater. Res. 28 81Google Scholar

  • [1] Meng Shao-Yi, Hao Qi, Lyu Guo-Jian, Qiao Ji-Chao. The β relaxation process of La-based amorphous alloy: Effect of annealing and strain amplitude. Acta Physica Sinica, 2023, 72(7): 076101. doi: 10.7498/aps.72.20222389
    [2] Liu Yong, Xu Zhi-Jun, Fan Li-Qun, Yi Wen-Tao, Yan Chun-Yan, Ma Jie, Wang Kun-Peng. Preparation and properties of multi-effect potassium sodium niobate based transparent ferroelectric ceramics. Acta Physica Sinica, 2020, 69(24): 247702. doi: 10.7498/aps.69.20201317
    [3] Zhang Jin-Shuai, Huang Qiu-Shi, Jiang Li, Qi Run-Ze, Yang Yang, Wang Feng-Li, Zhang Zhong, Wang Zhan-Shan. Stress and structure properties of X-ray W/Si multilayer under low temperature annealing. Acta Physica Sinica, 2016, 65(8): 086101. doi: 10.7498/aps.65.086101
    [4] Chen Jian-Hui, Yang Jing, Shen Yan-Jiao, Li Feng, Chen Jing-Wei, Liu Hai-Xu, Xu Ying, Mai Yao-Hua. Investigation of post-annealing enhancement effect of passivation quality of hydrogenated amorphous silicon. Acta Physica Sinica, 2015, 64(19): 198801. doi: 10.7498/aps.64.198801
    [5] Zhang Bin, Wang Wei-Li, Niu Qiao-Li, Zou Xian-Shao, Dong Jun, Zhang Yong. Effects of annealing in H2 atomsphere on optoelectronical properties of Nb-doped TiO2 thin films. Acta Physica Sinica, 2014, 63(6): 068102. doi: 10.7498/aps.63.068102
    [6] Wang Feng-Hao, Hu Xiao-Jun. Microstructural and photoelectrical properties of oxygen-ion-implanted microcrystalline diamond films. Acta Physica Sinica, 2013, 62(15): 158101. doi: 10.7498/aps.62.158101
    [7] Gu Shan-Shan, Hu Xiao-Jun, Huang Kai. Effects of annealing temperature on the microstructure and p-type conduction of B-doped nanocrystalline diamond films. Acta Physica Sinica, 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [8] Liu Jian-Peng, Zhu Yan-Xu, Guo Wei-Ling, Yan Wei-Wei, Wu Guo-Qing. The effect of ITO annealing on electrical characteristic of GaN based LED. Acta Physica Sinica, 2012, 61(13): 137303. doi: 10.7498/aps.61.137303
    [9] Jia Quan-Jie, Chen Yu, Tian Xue-Yan, Yao Jiang-Feng, Zhao Su-Ling, Gong Wei, Fan Xing, Xu Zheng, Zhang Fu-Jun. Study of crystalline structure change of annealing-induced self-organization in polymer field-effect transistors. Acta Physica Sinica, 2011, 60(5): 057201. doi: 10.7498/aps.60.057201
    [10] Luo Qing-Hong, Lou Yan-Zhi, Zhao Zhen-Ye, Yang Hui-Sheng. Effect of annealing on microstructure and mechanical propertiesof AlTiN multilayer coatings. Acta Physica Sinica, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [11] Zhang Shu-Ling, Sun Jian-Fei, Xing Da-Wei. Influence of field annealing on giant magneto-impedance effect of Co-based melt extraction amorphous wires. Acta Physica Sinica, 2010, 59(3): 2068-2072. doi: 10.7498/aps.59.2068
    [12] Yuan Chang-Lai, Liu Xin-Yu, Ma Jia-Feng, Zhou Chang-Rong. Study on the microstructures and electrical properties of Bi0.5Ba0.5Fe0.5Ti0.49Nb0.01O3 thermistor ceramic. Acta Physica Sinica, 2010, 59(6): 4253-4260. doi: 10.7498/aps.59.4253
    [13] Song Chao, Chen Gu-Ran, Xu Jun, Wang Tao, Sun Hong-Cheng, Liu Yu, Li Wei, Chen Kun-Ji. Properties of electric transport in crystallized silicon films under different annealing temperatures. Acta Physica Sinica, 2009, 58(11): 7878-7883. doi: 10.7498/aps.58.7878
    [14] Jiang Ai-Hua, Xiao Jian-Rong, Wang De-An. Influence of annealing on structure and optical band gap of nitrogen doping fluorinated amorphous carbon films. Acta Physica Sinica, 2008, 57(9): 6013-6017. doi: 10.7498/aps.57.6013
    [15] Shang Shu-Zhen, Shao Jian-Da, Shen Jian, Yi Kui, Fan Zheng-Xiu. Effects of annealing on electron-beam evaporated 193nm Al2O3/MgF2 HR mirrors. Acta Physica Sinica, 2006, 55(5): 2639-2643. doi: 10.7498/aps.55.2639
    [16] Wu Shi-Liang, Chen Ye-Qing, Wu Yi-Chu, Wang Shao-Jie, Wen Xi-Yu, Zhai Tong-Guang. Positron annihilation study of hot band of a continuous cast AA 2037 Al alloy after annealing. Acta Physica Sinica, 2006, 55(11): 6129-6135. doi: 10.7498/aps.55.6129
    [17] Wang Chong, Feng Qian, Hao Yue, Wan Hui. Effect of pre-metallization processing and annealing on Ni/Au Schottky contacts in AlGaN/GaN heterostructures. Acta Physica Sinica, 2006, 55(11): 6085-6089. doi: 10.7498/aps.55.6085
    [18] ZHU MING-GANG, LI WEI, DONG SHENG-ZHI, LI XIU-MEI. THE EFFECT ON THE MAGNETIC PROPERTIES OF THE DUAL-PHASE NANOCRYSTALLINE Nd(Fe,Co)B BONDED MAGNETS BY ADDING Ga. Acta Physica Sinica, 2001, 50(8): 1600-1604. doi: 10.7498/aps.50.1600
    [19] GUO DONG, CAI KAI, LI LONG-TU, GUI ZHI-LUN. ELECTRODEPOSITION OF DIAMOND-LIKE CARBON FILMS FROM ORGANIC SOLVENTS AND EFFECTS OF ANNEALING ON THE FILM STRUCTURE. Acta Physica Sinica, 2001, 50(12): 2413-2417. doi: 10.7498/aps.50.2413
    [20] TONG LIU-NIU, HE XIAN-MEI, LU MU. EFFECT OF ANNEALING ON THE MAGNETIC PROPERTIES OF Ni80Co20 THIN FILMS WITH IMPURITY LAYERS. Acta Physica Sinica, 2000, 49(11): 2290-2295. doi: 10.7498/aps.49.2290
Metrics
  • Abstract views:  416
  • PDF Downloads:  16
  • Cited By: 0
Publishing process
  • Received Date:  21 March 2025
  • Accepted Date:  03 April 2025
  • Available Online:  10 April 2025
  • Published Online:  05 June 2025

/

返回文章
返回
Baidu
map