Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The Role of Neutrals and Carbon in Divertor Detachment in the HL-3 tokamak

ZHOU YuLin WU XueKe XINLIANG Xu XIAO Guoliang LONG Ting GAO JinMin FAN DongMei MENG HanQi ZHAO Zhen WANG ZhanHui

Citation:

The Role of Neutrals and Carbon in Divertor Detachment in the HL-3 tokamak

ZHOU YuLin, WU XueKe, XINLIANG Xu, XIAO Guoliang, LONG Ting, GAO JinMin, FAN DongMei, MENG HanQi, ZHAO Zhen, WANG ZhanHui
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Divertor detachment is a critical technique for managing the thermal load on the divertor of the HL-3 tokamak, a key device in magnetic confinement fusion research. However, existing studies on detachment have largely overlooked the complex multi-species particle dynamics in the scrape-off layer (SOL) and divertor regions, particularly the interactions involving hydrogen isotopes (e.g., deuterium), externally injected impurities (e.g., neon), and intrinsic impurities (e.g., carbon). This study aims to address this gap by employing the newly developed multi-species particle transport code SD1D to investigate the effects of carbon impurities and neutral particles on two detachment scenarios in HL-3: plasma density ramp-up and neon injection into the divertor.
    The SD1D code models the transport, collision, and radiation processes of various particles, including deuterium ions, atoms, and molecules, as well as carbon and neon impurities, along the magnetic field lines from the SOL upstream to the divertor target. The study focuses on understanding how carbon impurities and neutral particles influence the detachment mechanisms under different conditions.
    The results reveal that carbon impurities generated in the divertor significantly enhance detachment in the density ramp-up scenario by increasing the density of deuterium atoms, molecules, and ions near the target plate, thereby boosting the total radiation power. This effect lowers the density threshold required for detachment and reduces the peak current on the target plate. However, carbon impurities have a minimal impact on detachment achieved through neon injection, as they do not significantly alter the density of deuterium species or the total radiation power in this scenario.
    Furthermore, the study highlights the distinct roles of neutral particles in the two detachment mechanisms. In the density ramp-up scenario, the increased plasma density promotes the recycling process in the divertor, generating a substantial population of neutral particles. The energy and momentum losses resulting from plasma-neutral interactions are crucial for achieving detachment. In contrast, neon injection directly reduces the saturation current on the target plate, suppressing the recycling process and diminishing the importance of neutral particles.
    In conclusion, this work demonstrates that carbon impurities play a significant role in facilitating detachment during plasma density ramp-up but have limited influence on detachment via neon injection. The findings underscore the importance of considering multi-species particle dynamics, including neutral particles and impurities, in understanding and optimizing divertor detachment strategies. Future work will involve validating the SD1D model against experimental data from HL-3 to further refine its predictive capabilities.
  • [1]

    Stangeby, Peter C. The plasma boundary of magnetic fusion devices. CRC Press, 2000.

    [2]

    Kallenbach, A., Bernert, M., Dux, R., Reimold, F., Wischmeier, M., & ASDEX Upgrade Team. 2016. Plasma Physics and Controlled Fusion, 58(4), 045013.

    [3]

    Stangeby P C 2018. Plasma Physics and Controlled Fusion, 60(4):044022

    [4]

    Verhaegh, K., Lipschultz, B., Bowman, C., Duval, B.P., Fantz, U., Fil, A., Harrison, J.R., Moulton, D., Myatra, O., Wünderlich, D. and Federici, F., 2021. Plasma Physics and Controlled Fusion, 63(3), p.035018.

    [5]

    Kunze, H.J., 2009. 56, Springer Science & Business Media.

    [6]

    Bernert, M., Wischmeier, M., Huber, A., Reimold, F., Lipschultz, B., Lowry, C., Brezinsek, S., Dux, R., Eich, T., Kallenbach, A. and Lebschy, A., 2017.Nuclear Materials and Energy, 12, pp.111-118.

    [7]

    Ting, W.U., Lin, N.I.E., Yi, Y.U., Jinming, G.A.O., Junyan, L.I., Huicong, M.A., Jie, W.E.N., Rui, K.E., Na, W.U., Huang, Z. and Liang, L.I.U., 2022. Plasma Science and Technology, 25(1), p.015102.

    [8]

    Zhou, Y., Dudson, B., Militello, F., Verhaegh, K. and Myatra, O., 2022. Plasma Physics and Controlled Fusion, 64(6), p.065006.

    [9]

    Boedo, J., Gray, D., Chousal, L., Conn, R., Hiller, B. and Finken, K.H., 1998. Review of scientific instruments, 69(7), pp.2663-2670.

    [10]

    Boedo J A, Crocker N, Chousal L, Hernandez R, Chalfant J, Kugel H, Roney P, Wertenbaker J and NSTX Team 2009. Review of Scientific Instruments, 80(12):123506

    [11]

    Clark, J.G., Bowden, M.D. and Scannell, R., 2021. Low temperature. Review of Scientific Instruments, 92(4).

    [12]

    Makarov, S.O., Coster, D.P., Kaveeva, E.G., Rozhansky, V.A., Senichenkov, I.Y., Veselova, I.Y., Voskoboynikov, S.P., Stepanenko, A.A., Bonnin, X. and Pitts, R.A., 2023. Nuclear Fusion, 63(2), p.026014.

    [13]

    Mailloux, J., Abid, N., Abraham, K., Abreu, P., Adabonyan, O., Adrich, P., Afanasev, V., Afzal, M., Ahlgren, T., Aho-Mantila, L. and Aiba, N., 2022. Nuclear Fusion, 62(4), p.042026.

    [14]

    Fil, A., Lipschultz, B., Moulton, D., Thornton, A., Dudson, B.D., Myatra, O., Verhaegh, K. and EUROfusion MST1 Team, 2022. Nuclear Fusion, 62(9), p.096026.

    [15]

    Myatra, O., Moulton, D., Dudson, B., Lipschultz, B., Newton, S., Verhaegh, K. and Fil, A., 2023. Nuclear Fusion, 63(7), p.076030.

    [16]

    Verhaegh, K., Lipschultz, B., Duval, B.P., Harrison, J.R., Reimerdes, H., Theiler, C., Labit, B., Maurizio, R., Marini, C., Nespoli, F. and Sheikh, U., 2017. Nuclear Materials and Energy, 12, pp.1112-1117.

    [17]

    Gao, J.M., Cai, L.Z., Cao, C.Z., Ma, H.C., Ke, R., Wu, N., Hu, Y., Gao, X.Y., Cui, C.H., Huang, Z.H. and Nie, L., 2023. Nuclear Fusion, 63(3), p.036006.

    [18]

    Long T, Ke R, Wu T, Gao J M, Cai L Z, Wang Z H, Xu M, 2024. Acta Phys. Sin., 73(8): 088901 [龙婷, 柯锐, 吴婷, 高金明, 才来中, 王占辉, 许敏, 2024. 73(8): 088901]

    [19]

    Wu, N., Cheng, J., Yi, K.Y., Wang, R., Han, M.K., Huang, Z.H., Wang, W.C., He, Y., Yan, L.W., Du, H.L. and Gao, J.M., 2024. Nuclear Fusion, 64(9), p.096007.

    [20]

    Liu, J.B., Wang, L., Guo, H.Y., Wang, H.Q., Xu, G.S., Ding, F., Xu, J.C., Liu, X.J., Yuan, Q.P., Wu, K. and Liu, S.C., 2019. Nuclear Fusion, 59(12), p.126046.

    [21]

    Dudson, B.D., Allen, J., Body, T., Chapman, B., Lau, C., Townley, L., Moulton, D., Harrison, J. and Lipschultz, B., 2019. Plasma Physics and Controlled Fusion, 61(6), p.065008.

    [22]

    Kallenbach, A., Bernert, M., Dux, R., Eich, T., Henderson, S.S., Pütterich, T., Reimold, F., Rohde, V., Sun, H.J. and ASDEX Upgrade Team, 2019.Nuclear Materials and Energy, 18, pp.166-174.

    [23]

    Zhou, Y., Dudson, B., Wu, T., Wang, Z., Xia, T., Zhong, C., Gao, J., Du, H. and Fan, D., 2024. Plasma Physics and Controlled Fusion, 66(5), p.055005.

  • [1] LOU Zongshuai, WANG Yuefei, KANG Boyi, ZHANG Wenjun, BU Minglu, WEI Yuanfei, CAI Yiyu. Theoretical calculation for dynamic polarizabilities of 4s2 1S0-4s4p3P0 transition for Ga+ ion. Acta Physica Sinica, doi: 10.7498/aps.74.20250125
    [2] Long Ting, Ke Rui, Wu Ting, Gao Jin-Ming, Cai Lai-Zhong, Wang Zhan-Hui, Xu Min. Studies of edge poloidal rotation and turbulence momentum transport during divertor detachment on HL-2A tokamak. Acta Physica Sinica, doi: 10.7498/aps.73.20231749
    [3] Yan Xiao-Yu, He Xiao-Fei, Yu Li-Ming, Liu Liang, Chen Wei, Shi Zhong-Bing, Lu Jie, Wei Hui-Ling, Han Ji-Feng, Zhang Yi-Po, Zhong Wu-Lü, Xu Min. Physical design and primary experimental results of imaging neutral particle analyzer on HL-2A tokamak. Acta Physica Sinica, doi: 10.7498/aps.72.20230768
    [4] Shen Yong, Dong Jia-Qi, He Hong-Da, Ding Xuan-Tong, Shi Zhong-Bing, Ji Xiao-Quan, Li Jia, Han Ming-Kun, Wu Na, Jiang Min, Wang Shuo, Li Ji-Quan, Xu Min, Duan Xu-Ru. Hollow current and reversed magnetic shear configurations in pellet injection discharges on Huanliuqi 2A tokamak. Acta Physica Sinica, doi: 10.7498/aps.70.20210641
    [5] Wang Jing-Li, Chen Zi-Yu, Chen He-Ming. Design of polarization-insensitive 1 × 2 multimode interference demultiplexer based on Si3N4/SiNx/Si3N4 sandwiched structure. Acta Physica Sinica, doi: 10.7498/aps.69.20191449
    [6] Sun Zhen-Yue, Sang Chao-Feng, Hu Wan-Peng, Wang De-Zhen. Simulation of erosion of the tungsten wall by impurities in the divertor plasma. Acta Physica Sinica, doi: 10.7498/aps.63.145204
    [7] Fan Shi-Lin, Zhang Xin-Feng, Xue Ping, Jia Feng-Dong, Zhong Zhi-Ping, Xu Xiang-Yuan. Theoretical study of autoionization Rydberg series 3d4s(1D2)nf2 D3/2,3d4s(1D2)nf2 F5/2 and 3d4s(1D2. Acta Physica Sinica, doi: 10.7498/aps.59.6036
    [8] Qin Meng, Tian Dong-Ping, Tao Ying-Juan. The effect of impurity on the thermal entanglement in three-qutrit spin-1 Heisenberg XXX chain. Acta Physica Sinica, doi: 10.7498/aps.57.5395
    [9] Yao Liang-Hua, Feng Bei-Bin, Chen Cheng-Yuan, Feng Zhen, Li Wei, Jiao Yi-Ming. Recent results of SMBI on the HL-2A tokamak with divertor configuration. Acta Physica Sinica, doi: 10.7498/aps.57.4159
    [10] Tang Wei-Hua, Li Pei-Gang, Li L. H., Gao J.. Fabrication and characterization of La2/3Ca1/3MnO3/Eu2CuO4/ La2/3Ca1/3MnO3 magnetic tunneling junctions. Acta Physica Sinica, doi: 10.7498/aps.54.291
    [11] Yang Bai-Fang, Miao Jing-Wei, Yang Chao-Wen, Shi Mian-Gong. H+5 cluster ion and its neutral products H3 and H4. Acta Physica Sinica, doi: 10.7498/aps.52.1901
    [12] LI GUANG-WU, MA HONG-LIANG, LI MAO-SHENG, CHEN ZHI-JUN, CHEN MIAO-HUA, LU FU-QUAN, PENG XIAN-JUE, YANG FU-JIA. HYPERFINE STRUCTURE MEASUREMENT IN LaⅡ5d2 1G4 →4f5d 1F3. Acta Physica Sinica, doi: 10.7498/aps.49.1256
    [13] YUAN ZE-LIANG, DING XUN-MIN, HU HAI-TIAN, LI ZHE-SHEN, YANG JIAN-SHU, MIAO XI-YUE, CHEN XI-YING, CAO XIAN-AN, HOU XIAO-YUAN, LU ER-DONG, XU SHI-HONG, XU PENG-SHOU, ZHANG XIN-YI. INVESTIGATION OF NEUTRALIZED (NH4)2S SOLUTION-PASSIVATED GaAs(100) SURFACES. Acta Physica Sinica, doi: 10.7498/aps.47.68
    [14] RAN QIN, SHU JI-NIAN, PEI LIN-SEN, CHEN CONG-XIANG, YU SHU-QIN, MA XING-XIAO, WU GUO-HUA, SHENG LIU-SI, ZHANG YUN-WU. PHOTOIONIZATION OF (CH3I)n(n=1,2,3,4) USING SYNCHROTRON RADIATION. Acta Physica Sinica, doi: 10.7498/aps.46.1473
    [15] ZHANG CUN-ZHOU, ZHANG GUANG-YIN, YU PING. EFFECT OF IMPURITIES ON INCOMMENSURATE PHASE TRANSITION OF K2ZnCl4 CRYSTAL. Acta Physica Sinica, doi: 10.7498/aps.41.1087
    [16] GU YI-MING, HUANG MING-ZHU, WANG KE LING. ELECTRONIC STRUCTURES OF 3d-TRANSITION METAL IN GaAs1-xPx ALLOY SYSTEM. Acta Physica Sinica, doi: 10.7498/aps.37.11
    [17] LIN ZUN-QI, CHEN WEN-HUA, YU WEN-YAN, TAN WEI-HAN, ZHENG YU-XIA, WANG GUAN-ZHI, GU MIN, ZHANG HUI-HUANG, CHENG RUI-HUA, CUI JI-XIU, DENG XI-MING. POPULATION INVERSION OF ENERGY LEVELS OF MgXI 1s3p AND 1s4p UNDER THE CONDITION OF AVERAGE HIGH TEMPERATURE AND HIGH ELECTRON DENSITY. Acta Physica Sinica, doi: 10.7498/aps.37.1236
    [18] FAN XI-QING, ZHANG DE-XUAN, SHEN SAN-GUO. A1, T2 SYMMETRIC DEEP LEVEL WAVE FUNCTIONS IN 3c-SiC. Acta Physica Sinica, doi: 10.7498/aps.37.183
    [19] GU YI-MING, HUANG MING-ZHU, WANG KE-LING. INVESTIGATION OF THE Cr2+(3d4) IN GaAs UNDER HYDROSTATIC PRESSURE AND AlAs ALLOYING. Acta Physica Sinica, doi: 10.7498/aps.37.206
    [20] CHE GUANG-CAN, TANG DI-SHENG. PHASE RELATIONS IN THE PSEUDO-TERNARY SYSTEM Li3VO4-Li4SiO4-Li4GeO4. Acta Physica Sinica, doi: 10.7498/aps.32.1061
Metrics
  • Abstract views:  32
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  01 April 2025

/

返回文章
返回
Baidu
map