Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on Mechanical Behavior Evolution of TATB Particle System Based on CT in-situ Characterization under Load

Tao Jie Li Hai-Ning Dai Bin Lan Lin-Gang Guo Fei Zhang Wei-Bin Nie Fu-De

Citation:

Study on Mechanical Behavior Evolution of TATB Particle System Based on CT in-situ Characterization under Load

Tao Jie, Li Hai-Ning, Dai Bin, Lan Lin-Gang, Guo Fei, Zhang Wei-Bin, Nie Fu-De
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • TATB is currently the safest explosive in terms of safety performance. Polymer bonded explosive (PBX) formed by pressing TATB particles has important applications in military. Under the action of stress, the evolution of TATB particle system determines the microstructure and overall quality of molding grain. The molding method of PBX is usually realized by molding technology. During the process of molding, the structural evolution and mechanical properties of TATB particle system are very complex under the action of loading, and the high discreteness, strong non-linearity and bonding characteristics are difficult to characterize.
    In this study, X-μ CT tomography and synchronous in-situ force loading were used to develop a set of image processing technology for TATB particle system, which was a multi-component, irregular, multi-particle size, heterogeneous, viscoelastic special composite material. High-quality CT images of TATB particles under force loading were obtained. A three-dimensional pore network model (PNM) of TATB particle system was established by CT image processing and analysis. Based on the model, the evolution characteristics of key parameters such as contact number, contact area, contact strength and coordination number were obtained.
    The results indicate the following evolutionary characteristics: at 0~5 MPa, with the process of pressing, the stress of TATB particle system increased continuously, and the number of particle contacts in the particle system decreases, with a reduction rate of53.3%; The total contact area decreased by31.5%, but the average contact area of a single particle continued to increase; The strength and weak contact of the entire particle system showed a downward trend, but the proportion of strength and weak remained almost unchanged, reflecting the stable characteristics of the TATB molding particle system in the external stable, linear, and slow loading process, and the average proportion of strong contact was 37.74%; The average increase rate of particle volume was 45.50%, and the curve of equivalent radius was very consistent with the curve of average particle volume; The average coordination number of the entire particle system increased from 7.27 to 9.44, and the highest coordination number range was 6~10. The morphological distribution showed the characteristics of approximately normal distribution, double-peak nearly normal distribution, flat-peak nearly normal distribution. At 5 MPa, some particles showed the characteristics of rotation and adaptive rearrangement, which was consistent with the quantitative analysis of the trend of particle contact number.
    This study reveals the movement, deformation and fusion rules of particles in the initial stage of the forming process, achieving the three-dimensional, quantitative and In-situ analysis of the force loading process of the particle system, and has important scientific and engineering significance for the understanding of the mechanical characteristics of the explosive particle pressing process.
  • [1]

    Dong H S, Zhou F F 1989 Performance of high-energy explosives and related substances (Beijing: Science Press) p20-32(in Chinese) [董海山, 周芬芬1989高能炸药及相关物性能(北京: 科学出版社)第20-32页]

    [2]

    Fan H, He G S, Yang Z J, Nie F D, Chen P W 2019 Acta Phys. Sin. 68106201(in Chinese) [范航, 何冠松, 杨志剑, 聂福德, 陈鹏万2019 68106201]

    [3]

    Hamilton B W, Kroonblawd M P, Isiam M M, Strachan A 2019 Journal of Physical Chemistry C 12321969.

    [4]

    Steele B A, Clarke S M, Kroonblawd M P, Kuo I F, Pagoria P F, Tkachev S N, Smith J S, Bastea S, Fried L E, Zaug J M, Stavrou E, Tschauner O 2019 Applied Physics Letters. 114191901

    [5]

    Hertz H 1882 J. Reine Angew. Math. 1882156

    [6]

    Chang C S, Liao C L 1990 Int. J. Solids Structures. 26437

    [7]

    Tordesillas A, Peters J F, Gardiner B S 2004 Int J Numer Anal Met,28981

    [8]

    Andrade J E, Cacute V, Lim K W, Jerves A 2012 Géotechnique Letters, 2135

    [9]

    Coppersmith S N, Liu C H, Majumdar S, Narayan O, Witten T A 1996 Physical Review E, 534673

    [10]

    Silva M D, Rajchenbach J 2000 Nature. 406708

    [11]

    Andrade J E, Avila C F 2012 Granular Matter. 1451

    [12]

    Hurley R, Marteau E, Ravichandran G, Andrade J E 2014 Journal of the Mechanics and Physics of Solids. 63154

    [13]

    Zhai C P, Herbold E B, Hurley R C 2020 PNAS, 1176234

    [14]

    Chen Q, Wang Q H, Zhao C, Zhang Q, Hou M Y 2015 Acta Phys. Sin. 64154502(in Chinese) [陈琼,王青花,赵闯,张祺,厚美瑛2015 64154502]

    [15]

    Løvoll G. Måløy K J, Flekkøy E G 1999 Physical Review E, 605872

    [16]

    Miao T D, Yi C H, Qi Y L, Mu Q S, Liu Y 2007 Acta Phys. Sin.564713(in Chinese) [苗天德,宜晨虹,齐艳丽,慕青松,刘源2007 564713]

    [17]

    Yang R W. 2007 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [杨荣伟2009硕士学位论文(北京:清华大学)]

    [18]

    Zhou J, Long S, Wang Q, Dinsmore A D 2006 Science. 3121631

    [19]

    Sanfratello L, Fukushima E, Behringer R P 2009 Granular Matter. 111

    [20]

    Xing Y, Zheng J, Li J D, Cao Y X, Pan W, Zhang J, Wang Y J 2021 Physical Review Letters. 126048002

    [21]

    Baur M, Claussen J, Gerth S, Kollmer J, Shreve T, Uhlmann N, Pöschel T 2019 Powder Technology. 356439

    [22]

    Nguyen C D, Benahmed N, Andò E, Sibille L, Philippe P 2019 Acta Geotechnica. 14749

    [23]

    Brisard S, Serdar M, Monteiro P J M 2020 Cement and Concrete Research. 128105824

    [24]

    Ramesh S, Thyagaraj T 2022 Geomechanics and Geophysics for Geo-Energy and Geo-Resources. 811

    [25]

    Fonseca J, O’Sullivan C, Coop M R, Lee P D 2012 Soils and Foundations 52712

    [26]

    Ma Y X, Liu C, Wang H, Zhang C X, Chen H, Zhang W B 2020 Chin.J. Energ. Mater. 28960(in Chinese) [马寅翔,刘晨,王慧,张才鑫,陈华,张伟斌2020含 能材料28960]

    [27]

    Dai B 2015 M.S. (Beijing: Graduate School of China Academy of Engineering Physics) (in Chinese) [戴斌2015硕士学位论文(北京: 中国工程物理研究院研究生院)]

    [28]

    Koyuncu C F, Durmaz I, Cetin-Atalay R, Gunduz D C 201422nd Signal Processing and Communications Applications Conference, Trabzon, April 23-25, 2014 p1971

    [29]

    Mouelhi A, Sayadi M, Fnaiech F, Mrad K 2013 Biomedical Signal Processing and Control. 8421

    [30]

    Li Z T, Liu D M, Cai Y D, Ranjith P G, Yao Y B 2017 Fuel. 20943

    [31]

    Jing H L, Dan H C, Shan H Y, Liu X 2023 Materials. 167426

    [32]

    Harshini D R D G, Gamage R P, Kumari W G P 2024 Gas Science and Engineering. 125205280

    [33]

    Zakirov T R, Galeev A A, Korolev E A, Statsenko E O 2016 Curr. Sci. 1102142

    [34]

    Ren X Z, Linden J V D, Narsilio G 2019 Geoscience. 33345(in Chinese) [任显卓, LINDEN Joost van der, NARSILIO Guillermo 201933345]

    [35]

    Yin S H, Chen X, Liu C, Wang L M, Yan R F 2020 Chinese Journal of Engineering. 42972(in Chinese) [尹升华,陈勋,刘超,王雷鸣,严荣富2020工 程科学学报42972]

  • [1] Liu Han-Yang, Hua Nan, Wang Yi-Nuo, Liang Jun-Qing, Ma Hong-Yang. Three dimensional image encryption algorithm based on quantum random walk and multidimensional chaos. Acta Physica Sinica, doi: 10.7498/aps.71.20220466
    [2] Shen Tian-Zhan, Song Hai-Yang, An Min-Rong. Effect of twin boundary on mechanical behavior of Cr26Mn20Fe20Co20Ni14 high-entropy alloy by molecular dynamics simulation. Acta Physica Sinica, doi: 10.7498/aps.70.20210324
    [3] Yi Jun. Fabrications and mechanical behaviors of amorphous fibers. Acta Physica Sinica, doi: 10.7498/aps.66.178102
    [4] Han Tong-Wei, Li Pan-Pan. Investigation on the large tensile deformation and mechanical behaviors of graphene kirigami. Acta Physica Sinica, doi: 10.7498/aps.66.066201
    [5] Liu Xiao-Yu, Zhang Guo-Hua, Sun Qi-Cheng, Zhao Xue-Dan, Liu Shang. Numerical study on acoustic behavior of two-dimensional granular system. Acta Physica Sinica, doi: 10.7498/aps.66.234501
    [6] Zhao Xin-Wen, Li Xin-Zhu, Zhang Hang, Wang Xue-Jun, Song Ping, Zhang Han-Zhao, Kang Qiang, Huang Jin, Wu Qiang. Dynamical behaviors of Sn micro-sphere particles under shock wave action. Acta Physica Sinica, doi: 10.7498/aps.66.104701
    [7] Jiang Wen-Can, Chen Hua, Zhang Wei-Bin. First-principles study of the phonon spectrum and heat capacity of TATB crystal. Acta Physica Sinica, doi: 10.7498/aps.65.126301
    [8] Wu Di-Ping, Li Xing-Xiang, Qin Qin, Guan Ben, Zang Yong. Study on mechanical behavior of the transverse processing on a granular matter layer. Acta Physica Sinica, doi: 10.7498/aps.63.098201
    [9] Li Lan-Kai, Wang Hou-Sheng, Ni Zhi-Peng, Cheng Jun-Sheng, Wang Qiu-Liang. Mechanical stress in superconducting coils during winding process. Acta Physica Sinica, doi: 10.7498/aps.62.058403
    [10] Xun Zhi-Peng, Tang Gang, Xia Hui, Hao Da-Peng. Numerical study on the dynamic behavior of internal structure of 1+1-dimensional ballistic deposition model. Acta Physica Sinica, doi: 10.7498/aps.62.010503
    [11] Ji Ying, Bi Qin-Sheng. Bifurcation analysis of slow-fast behavior in modified Chua's circuit. Acta Physica Sinica, doi: 10.7498/aps.61.010202
    [12] Hu Xiao-Ping, Guo Hong. The influence of mass center motion on -type three-level atom dynamics. Acta Physica Sinica, doi: 10.7498/aps.58.272.1
    [13] Jiang Ze-Hui, Zheng Rui-Hua, Zhao Hai-Fa, Wu Jing. Dynamical behavior of a completely inelastic ball bouncing on a vibrating plate. Acta Physica Sinica, doi: 10.7498/aps.56.3727
    [14] Wang Min, Hu Xiao-Fang, Wu Xiao-Ping. Digital image correlation method for the analysis of 3-D internal displacement field in object. Acta Physica Sinica, doi: 10.7498/aps.55.5135
    [15] Tang Jun, Yang Xian-Qing, Qiu Kang. Studies on dynamical behavior in reaction limited aggregation model. Acta Physica Sinica, doi: 10.7498/aps.54.3307
    [16] HE DAI-HAI, XU JIAN-XUE, CHEN YONG-HONG. A STUDY ON STRANGE DYNAMICS OF A TWO-DIMENSIONAL MAP. Acta Physica Sinica, doi: 10.7498/aps.48.1611
    [17] YANG YUAN, DAI JIAN-HUA, ZHANG HONG-JUN. THE DYNAMICAL BEHAVIOR OF A DISCRETE MODEL OF OPTICAL BISTABLE SYSTEM. Acta Physica Sinica, doi: 10.7498/aps.43.699
    [18] Teng Bao-hua. GREEN'S FUNCTION APPROACH TO 3-DIMENSIONAL ISING MODEL. Acta Physica Sinica, doi: 10.7498/aps.40.826
    [19] WANG ZI-DAN, YAO XI-XIAN. DYNAMICAL BEHAVIOR OF RF-BIASED JOSEPHSON JUNCTIONS (Ⅱ). Acta Physica Sinica, doi: 10.7498/aps.34.1149
    [20] WANG ZI-DAN, YAO XI-XIAN. DYNAMICAL BEHAVIOR OF RF-BIASED JOSEPHSON JUNCTIONS (Ⅰ). Acta Physica Sinica, doi: 10.7498/aps.34.1140
Metrics
  • Abstract views:  27
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  06 June 2025

/

返回文章
返回
Baidu
map