-
The widely used energetic material 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB) is an extremely powerful explosive and known for its extraordinary insensitivity to external stimuli (i.e., shock, friction, impact). TATB crystal exhibits graphitic-like sheets with significant inter- and intra-molecular hydrogen bondings within each layer and weak van der Waals (vdW) interactions between layers. Although TATB has been extensively studied both theoretically and experimentally, a fully understanding of its unique detonation phenomenon at a microscopic level is still lacking. Before establishing the exact pathway through which the initial energy is transferred, a fundamental knowledge of both the lattice vibrations (phonons) and molecule internal vibrations must be gained at the first step. Recently, it has been demonstrated that density functional theory (DFT) is inadequate in treating conventional energetic materials, within which dispersion interactions appear to be major contributors to the binding forces. In the present work, phonon spectrum and specific heat of TATB crystal are calculated in the framework of DFT with vdW-DF2 correction, which has been validated in our previous studies of the equation of state, structure and vibration property of TATB crystal under pressures in a range of 0-8.5 GPa. Structure optimization is preformed at zero-pressure, followed by calculating the equation of state, crystal density and lattice energy. The computed results are found to fit well with the experimental and other theoretical values. Frozen phonon method is used to calculate the phonon spectrum and phonon density of states. We find that the phonon density of states reaches its maximum at a vibration frequency of 2.3 THz, which is in good agreement with the strong absorption peak at 2.22 THz observed by THz spectroscopy. The assignment of several Raman active vibrations of TATB above 7.5 THz is given, and a comparison with other published results is also made in this study. Furthermore, the contributions of different phonon vibration modes to the specific heat are derived from the phonon density of states. The number of doorway modes (i.e., the low frequency molecular vibrations that is critical to detonation initiation) of TATB in a range of 6.0-21.0 THz is estimated based on the phonon density of states. It is shown that the phonon modes in a range of 0-27.5 THz would contribute 93.7% of the total specific heat at room temperature. By combining a Mulliken population analysis of TATB with the relative contribution of phonon vibration modes to the specific heat at 300-600 K, we conclude that C-NO2 bond might be the trigger bond of TATB during thermolysis.
-
Keywords:
- TATB /
- phonon spectrum /
- specific heat /
- van der Waals correction
[1] Cady H H, Larson A C 1965 Acta Crystallogr. 18 485
[2] Ji G F 2002 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [姬广富 2002 博士学位论文 (南京: 南京理工大学)]
[3] Fedorov I A, Zhuravlev Y N 2014 Chem. Phys. 436 1
[4] Liu H 2006 Ph. D. Dissertation (Shichuan: Sounthwest Jiaotong University) (in Chinese) [刘红 2006 博士学位论文 (四川: 西南交通大学)]
[5] Ojeda O U, ağin T 2011 J. Phys. Chem. B 115 12085
[6] Gorshkov M, Grebenkin K, Zherebtsov A, Zaikin V, Slobodenyukov V, Tkachev O 2007 Combust. Explo. Shock 43 78
[7] Bourasseau E, Maillet J B, Desbiens N, Stoltz G 2011 J. Phys. Chem. A 115 10729
[8] Xiao J J, Huang Y C, Hu Y J, Xiao H M 2005 Sci. China Ser. B Chem. 48 504
[9] Budzevich M M, Landerville A C, Conroy M W, Lin Y, Oleynik I I, White C T 2010 J. Appl. Phys. 107 113524
[10] Dove M T 1993 Introduction to Lattice Dynamics (Cambridge: Cambridge University Press) pp1-2
[11] Burnham A K, Weese R K, Wemhoff A P, Maienschein J L 2007 J. Therm. Anal. Calorim. 89 407
[12] Dlott D D 2011 Annu. Rev. Phys. Chem. 62 575
[13] Tarver C 1997 J. Phys. Chem. A 101 4845
[14] Dlott D D 2003 J. Theor. Comput. Chem. 13 125
[15] Henson B F, Smilowitz L B 2010 Shock Wave Science and Technology Reference Library Berlin Heidelberg 2010 pp45-128
[16] Kraczek B, Chung P W 2013 J. Chem. Phys. 138 074505
[17] Coffey C, Toton E 1982 J. Chem. Phys. 76 949
[18] Dlott D, Fayer M D 1990 J.Chem. Phys. 92 3798
[19] Tokmakoff A, Fayer M, Dlott D D 1993 J. Phys. Chem. 97 1901
[20] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133
[21] Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864
[22] Baroni S, Gironcoli S D, Corso A D, Giannozzi P 2001 Rev. Mod. Phys. 73 515
[23] Li X X, Tao X M, Chen H M, Ouyang Y F, Du Y 2013 Chin. Phys. B 22 366
[24] Feng S K, Li S M, Fu H Z 2014 Chin. Phys. B 23 420
[25] Yu Y, Chen C L, Zhao G D, Zhao X L, Zhu X H 2014 Chin. Phys. Lett. 31 100
[26] Zhang X J, Chen C L, Feng F L 2013 Chin. Phys. B 22 520
[27] Pu C Y, Ye X T, Jiang H L, Zhang F W, Lu Z W, He J B, Zhou D W 2015 Chin. Phys. B 3 275
[28] Velizhanin K A, Kilina S, Sewell T D, Piryatinski A 2008 J. Phys. Chem. B 112 13252
[29] Wu Z, Kalia R K, Nakano A, Vashishta P 2011 J. Chem. Phys. 134 204509
[30] Long Y, Chen J 2014 Philos. Mag. 94 2656
[31] Cui H L, Ji G F, Chen X R, Zhu W H, Zhao F, Wen Y, Wei D Q 2009 J. Phys. Chem. A 114 1082
[32] Sorescu D C, Rice B M 2010 J. Phys. Chem. C 114 6734
[33] Lee K, Murray D, Kong L, Lundqvist B I, Langreth D C 2010 Phys. Rev. B 82 081101
[34] Jiang W C, Chen H, Zhang W B 2016 Chin. J. Energ. Mater. (in Chinese) [蒋文灿, 陈华, 张伟斌 2016 含能材料] (in press)
[35] Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15
[36] Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106
[37] Birch F 1947 Phys. Rev. 71 809
[38] Olinger B W, Cady H H 1976 Conference: 6. Symposium on Detonation San Diego, California, August 24-27, 1976 p224
[39] Stevens L L, Velisavljevic N, Hooks D E, Dattelbaum D M 2008 Propell. Explos. Pyrot. 33 286
[40] Rosen J M, Dickinson C 1969 J. Chem. Eng. Data 14 120
[41] Jin Z, Liu J, Wang L L, Cao F L, Sun H 2014 Acta Phys. -Chem. Sin. 30 654 (in Chinese) [金钊, 刘建, 王丽莉, 曹风雷, 孙淮 2014 物理化学学报 30 654]
[42] Liu L, Liu Y, Zybin S V, Sun H, Goddard III W A 2011 J. Phys. Chem. A 115 11016
[43] Valenzano L, Slough W J, Perger W 2012 Shock Compression of Condensed Matter-2011: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter Chicago, IIIinois, June 26-July 1, 2011 pp1191-1194
[44] Xu W T 1999 Group Theory and Its Applications in Solid State Physics (Beijing: Higher Education Press) pp218-221 (in Chinese) [徐婉棠 1999 群论及其在固体物理中的应用(北京: 高等教育出版社 第218-221页)]
[45] Pravica M, Yulga B, Liu Z, Tschauner O 2007 Phys. Rev. B 76 64102
[46] Mcgrane S, Shreve A 2003 J. Chem. Phys. 119 5834
[47] Liu H, Zhao J, Ji G, Wei D, Gong Z 2006 Phys. Lett. A 358 63
[48] Jia C Q, Song T, Liu X Y, Zhang Z W, Jiang G 2013 Chin. J. Energ. Mater. 21 434 (in Chinese) [贾传强, 宋涛, 刘晓亚, 张振伟, 蒋刚 2013 含能材料 21 434]
[49] Hill J R, Dlott D D 1989 J. Chem. Phys. 89 830
[50] Ye S, Tonokura K, Koshi M 2003 Combust. Flame 132 240
[51] Ge S H, Cheng X L, Wu L S, Yang X D 2007 J. Mol. Struct. 809 55
[52] Huang K, Han R Q 1966 Solid States Physics (Beijing: People's Education Press) pp79-82 (in Chinese) [黄昆, 韩汝琦 1966 固体物理学(北京: 人民教育出版社)第79-82页]
[53] Xiao H M, Fan J F, Gu Z M, Dong H S 1998 Chem. Phys. 226 15
[54] Wu Q, Chen H, Xiong G, Zhu W, Xiao H 2015 J. Phys. Chem. C 29 16500
-
[1] Cady H H, Larson A C 1965 Acta Crystallogr. 18 485
[2] Ji G F 2002 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [姬广富 2002 博士学位论文 (南京: 南京理工大学)]
[3] Fedorov I A, Zhuravlev Y N 2014 Chem. Phys. 436 1
[4] Liu H 2006 Ph. D. Dissertation (Shichuan: Sounthwest Jiaotong University) (in Chinese) [刘红 2006 博士学位论文 (四川: 西南交通大学)]
[5] Ojeda O U, ağin T 2011 J. Phys. Chem. B 115 12085
[6] Gorshkov M, Grebenkin K, Zherebtsov A, Zaikin V, Slobodenyukov V, Tkachev O 2007 Combust. Explo. Shock 43 78
[7] Bourasseau E, Maillet J B, Desbiens N, Stoltz G 2011 J. Phys. Chem. A 115 10729
[8] Xiao J J, Huang Y C, Hu Y J, Xiao H M 2005 Sci. China Ser. B Chem. 48 504
[9] Budzevich M M, Landerville A C, Conroy M W, Lin Y, Oleynik I I, White C T 2010 J. Appl. Phys. 107 113524
[10] Dove M T 1993 Introduction to Lattice Dynamics (Cambridge: Cambridge University Press) pp1-2
[11] Burnham A K, Weese R K, Wemhoff A P, Maienschein J L 2007 J. Therm. Anal. Calorim. 89 407
[12] Dlott D D 2011 Annu. Rev. Phys. Chem. 62 575
[13] Tarver C 1997 J. Phys. Chem. A 101 4845
[14] Dlott D D 2003 J. Theor. Comput. Chem. 13 125
[15] Henson B F, Smilowitz L B 2010 Shock Wave Science and Technology Reference Library Berlin Heidelberg 2010 pp45-128
[16] Kraczek B, Chung P W 2013 J. Chem. Phys. 138 074505
[17] Coffey C, Toton E 1982 J. Chem. Phys. 76 949
[18] Dlott D, Fayer M D 1990 J.Chem. Phys. 92 3798
[19] Tokmakoff A, Fayer M, Dlott D D 1993 J. Phys. Chem. 97 1901
[20] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133
[21] Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864
[22] Baroni S, Gironcoli S D, Corso A D, Giannozzi P 2001 Rev. Mod. Phys. 73 515
[23] Li X X, Tao X M, Chen H M, Ouyang Y F, Du Y 2013 Chin. Phys. B 22 366
[24] Feng S K, Li S M, Fu H Z 2014 Chin. Phys. B 23 420
[25] Yu Y, Chen C L, Zhao G D, Zhao X L, Zhu X H 2014 Chin. Phys. Lett. 31 100
[26] Zhang X J, Chen C L, Feng F L 2013 Chin. Phys. B 22 520
[27] Pu C Y, Ye X T, Jiang H L, Zhang F W, Lu Z W, He J B, Zhou D W 2015 Chin. Phys. B 3 275
[28] Velizhanin K A, Kilina S, Sewell T D, Piryatinski A 2008 J. Phys. Chem. B 112 13252
[29] Wu Z, Kalia R K, Nakano A, Vashishta P 2011 J. Chem. Phys. 134 204509
[30] Long Y, Chen J 2014 Philos. Mag. 94 2656
[31] Cui H L, Ji G F, Chen X R, Zhu W H, Zhao F, Wen Y, Wei D Q 2009 J. Phys. Chem. A 114 1082
[32] Sorescu D C, Rice B M 2010 J. Phys. Chem. C 114 6734
[33] Lee K, Murray D, Kong L, Lundqvist B I, Langreth D C 2010 Phys. Rev. B 82 081101
[34] Jiang W C, Chen H, Zhang W B 2016 Chin. J. Energ. Mater. (in Chinese) [蒋文灿, 陈华, 张伟斌 2016 含能材料] (in press)
[35] Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15
[36] Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106
[37] Birch F 1947 Phys. Rev. 71 809
[38] Olinger B W, Cady H H 1976 Conference: 6. Symposium on Detonation San Diego, California, August 24-27, 1976 p224
[39] Stevens L L, Velisavljevic N, Hooks D E, Dattelbaum D M 2008 Propell. Explos. Pyrot. 33 286
[40] Rosen J M, Dickinson C 1969 J. Chem. Eng. Data 14 120
[41] Jin Z, Liu J, Wang L L, Cao F L, Sun H 2014 Acta Phys. -Chem. Sin. 30 654 (in Chinese) [金钊, 刘建, 王丽莉, 曹风雷, 孙淮 2014 物理化学学报 30 654]
[42] Liu L, Liu Y, Zybin S V, Sun H, Goddard III W A 2011 J. Phys. Chem. A 115 11016
[43] Valenzano L, Slough W J, Perger W 2012 Shock Compression of Condensed Matter-2011: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter Chicago, IIIinois, June 26-July 1, 2011 pp1191-1194
[44] Xu W T 1999 Group Theory and Its Applications in Solid State Physics (Beijing: Higher Education Press) pp218-221 (in Chinese) [徐婉棠 1999 群论及其在固体物理中的应用(北京: 高等教育出版社 第218-221页)]
[45] Pravica M, Yulga B, Liu Z, Tschauner O 2007 Phys. Rev. B 76 64102
[46] Mcgrane S, Shreve A 2003 J. Chem. Phys. 119 5834
[47] Liu H, Zhao J, Ji G, Wei D, Gong Z 2006 Phys. Lett. A 358 63
[48] Jia C Q, Song T, Liu X Y, Zhang Z W, Jiang G 2013 Chin. J. Energ. Mater. 21 434 (in Chinese) [贾传强, 宋涛, 刘晓亚, 张振伟, 蒋刚 2013 含能材料 21 434]
[49] Hill J R, Dlott D D 1989 J. Chem. Phys. 89 830
[50] Ye S, Tonokura K, Koshi M 2003 Combust. Flame 132 240
[51] Ge S H, Cheng X L, Wu L S, Yang X D 2007 J. Mol. Struct. 809 55
[52] Huang K, Han R Q 1966 Solid States Physics (Beijing: People's Education Press) pp79-82 (in Chinese) [黄昆, 韩汝琦 1966 固体物理学(北京: 人民教育出版社)第79-82页]
[53] Xiao H M, Fan J F, Gu Z M, Dong H S 1998 Chem. Phys. 226 15
[54] Wu Q, Chen H, Xiong G, Zhu W, Xiao H 2015 J. Phys. Chem. C 29 16500
计量
- 文章访问数: 8357
- PDF下载量: 378
- 被引次数: 0